Citation: | Mohd Saufi Md Zaini, Muhammad Arshad, Syed Shatir A. Syed-Hassan. Adsorption Isotherm and Kinetic Study of Methane on Palm Kernel Shell-Derived Activated Carbon[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 66-77. doi: 10.1016/j.jobab.2022.11.002 |
Abdul Manap, N.R., Shamsudin, R., Maghpor, M.N., Abdul Hamid, M.A., Jalar, A., 2018. Adsorption isotherm and kinetic study of gas-solid system of formaldehyde on oil palm mesocarp bio-char: pyrolysis effect. J. Environ. Chem. Eng. 6, 970–983. doi: 10.1016/j.jece.2017.12.067
|
Abdullah, M.A., Chiang, L., Nadeem, M., 2009. Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents. Chem. Eng. J. 146, 370–376. doi: 10.1016/j.cej.2008.06.018
|
Abubakar, A., Ishak, M.Y., Makmom, A.A., 2022. Nexus between climate change and oil palm production in Malaysia: a review. Environ Monit Assess 194, 262. doi: 10.1007/s10661-022-09915-8
|
Alcañiz-Monge, J., Román-Martínez, M.D.C., Lillo-Ródenas, M. Á., 2022. Chemical activation of lignocellulosic precursors and residues: what else to consider? Molecules 27, 1630. doi: 10.3390/molecules27051630
|
Arami-Niya, A., Daud, W.M.A.W., Mjalli, F.S., 2011. Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem. Eng. Res. Des. 89, 657–664. doi: 10.1016/j.cherd.2010.10.003
|
Bouguessa, R., Tarabet, L., Loubar, K., Belmrabet, T., Tazerout, M., 2020. Experimental investigation on biogas enrichment with hydrogen for improving the combustion in diesel engine operating under dual fuel mode. Int. J. Hydrog. Energy 45, 9052–9063. doi: 10.1016/j.ijhydene.2020.01.003
|
Chang, C.F., Chang, C.Y., Tsai, W.T., 2000. Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO(2) and steam. J. Colloid Interface Sci. 232, 45–49. doi: 10.1006/jcis.2000.7171
|
Che Othman, F.E., Ismail, M.S., Yusof, N., Samitsu, S., Yusop, M.Z., Tajul Arifin, N.F., Alias, N.H., Jaafar, J., Aziz, F., Wan Salleh, W.N., Ismail, A.F., 2020. Methane adsorption by porous graphene derived from rice husk ashes under various stabilization temperatures. Carbon Lett. 30, 535–543. doi: 10.1007/s42823-020-00123-3
|
Cheng, W.P., Gao, W., Cui, X.Y., Ma, J.H., Li, R.F., 2016. Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. Eng. 62, 192–198. doi: 10.1016/j.jtice.2016.02.004
|
Choi, G.G., Oh, S.J., Lee, S.J., Kim, J.S., 2015. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour. Technol. 178, 99–107. doi: 10.1016/j.biortech.2014.08.053
|
Chong, L., Sanguinito, S., Goodman, A.L., Myshakin, E.M., 2021. Molecular characterization of carbon dioxide, methane, and water adsorption in micropore space of kerogen matrix. Fuel 283, 119254. doi: 10.1016/j.fuel.2020.119254
|
Daud, W.M.A.W., Ali, W.S.W., 2004. Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 93, 63–69. doi: 10.1016/j.biortech.2003.09.015
|
Daud, W.M.A.W., Ali, W.S.W., Sulaiman, M.Z., 2001. Effect of carbonization temperature on the yield and porosity of char produced from palm shell. J. Chem. Technol. Biotechnol. 76, 1281–1285. doi: 10.1002/jctb.515
|
Hidayu, A.R., Muda, N., 2016. Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Eng. 148, 106–113. doi: 10.1016/j.proeng.2016.06.463
|
Ho, Y.S., McKay, G., 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process. Saf. Environ. Prot. 76, 332–340. doi: 10.1205/095758298529696
|
Hock, P.E., Zaini, M.A.A., 2018. Activated carbons by zinc chloride activation for dye removal: a commentary. Acta Chimica Slovaca 11, 99–106. doi: 10.2478/acs-2018-0015
|
Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kunglia Svenska Vetenskapsakad. Handl. 24, 1–39.
|
Liu, J., Zhou, Y.P., Sun, Y., Su, W., Zhou, L., 2011. Methane storage in wet carbon of tailored pore sizes. Carbon 49, 3731–3736. doi: 10.1016/j.carbon.2011.05.005
|
Lua, A.C., 2020. A detailed study of pyrolysis conditions on the production of steam-activated carbon derived from oil-palm shell and its application in phenol adsorption. Biomass Conv. Bioref. 10, 523–533. doi: 10.1007/s13399-019-00447-9
|
Lua, A.C., Guo, J., 2000. Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 38, 1089–1097. doi: 10.1016/S0008-6223(99)00231-6
|
Maneerung, T., Liew, J., Dai, Y.J., Kawi, S., Chong, C., Wang, C.H., 2016. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresour. Technol. 200, 350–359. doi: 10.1016/j.biortech.2015.10.047
|
Manocha, S.M., 2003. Porous carbons. Sadhana 28, 335–348. doi: 10.1007/BF02717142
|
Men'shchikov, I., Shiryaev, A., Shkolin, A., Vysotskii, V., Khozina, E., Fomkin, A., 2021. Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption. Korean J. Chem. Eng. 38, 276–291. doi: 10.1007/s11814-020-0683-2
|
Mirzaei, S., Ahmadpour, A., Shahsavand, A., Rashidi, H., Arami-Niya, A., 2020. Superior performance of modified pitch-based adsorbents for cyclic methane storage. J. Energy Storage 28, 101251. doi: 10.1016/j.est.2020.101251
|
Montoya-Suarez, S., Colpas-Castillo, F., Meza-Fuentes, E., Rodríguez-Ruiz, J., Fernandez-Maestre, R., 2016. Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium (Ⅵ), phenol, and methylene blue dye adsorption. Water Sci. Technol. 73, 21–27. doi: 10.2166/wst.2015.293
|
Mosher, K., He, J.J., Liu, Y.Y., Rupp, E., Wilcox, J., 2013. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 109/110, 36–44. doi: 10.1016/j.coal.2013.01.001
|
Piccin, J.S., Dotto, G.L., Pinto, L.A.A., 2011. Adsorption isotherms and thermochemical data of FD & C Red n° 40 binding by Chitosan. Braz. J. Chem. Eng. 28, 295–304. doi: 10.1590/S0104-66322011000200014
|
Prasetyo, I., Mukti, N.I.F., Cahyono, R.B., Prasetya, A., Ariyanto, T., 2020. Nanoporous carbon prepared from palm kernel shell for CO2/CH4 separation. Waste Biomass Valor 11, 5599–5606. doi: 10.1007/s12649-020-01006-4
|
Praveen, S., Jegan, J., Pushpa, T.B., Gokulan, R., Bulgariu, L., 2022. Biochar for removal of dyes in contaminated water: an overview. Biochar 4, 1–16. doi: 10.1007/s42773-021-00127-w
|
Rashidi, N.A., Yusup, S., 2017. Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J. Clean. Prod. 168, 474–486. doi: 10.1016/j.jclepro.2017.09.045
|
Royer, B., Cardoso, N.F., Lima, E.C., Vaghetti, J.C.P., Simon, N.M., Calvete, T., Veses, R.C., 2009. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—kinetic and equilibrium study. J. Hazard. Mater. 164, 1213–1222. doi: 10.1016/j.jhazmat.2008.09.028
|
Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B., Koren, Z.C., 2013. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crops Prod. 47, 153–159. doi: 10.1016/j.indcrop.2013.03.004
|
Syed-Hassan, S.S.A., Zaini, M.S.M., 2016. Optimization of the preparation of activated carbon from palm kernel shell for methane adsorption using Taguchi orthogonal array design. Korean J. Chem. Eng. 33, 2502–2512. doi: 10.1007/s11814-016-0072-z
|
Sze, M.F.F., McKay, G., 2010. An adsorption diffusion model for removal of Para-chlorophenol by activated carbon derived from bituminous coal. Environ. Pollut. 158, 1669–1674. doi: 10.1016/j.envpol.2009.12.003
|
Thangalazhy-Gopakumar, S., Al-Nadheri, W.M.A., Jegarajan, D., Sahu, J.N., Mubarak, N.M., Nizamuddin, S., 2015. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresour. Technol. 178, 65–69. doi: 10.1016/j.biortech.2014.09.068
|
Wang, J.L., Guo, X., 2020. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 258, 127279. doi: 10.1016/j.chemosphere.2020.127279
|
Weber, W.J., Morris, J.C., 1963. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60.
|
Yang, K.B., Peng, J.H., Srinivasakannan, C., Zhang, L.B., Xia, H.Y., Duan, X.H., 2010. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 101, 6163–6169. doi: 10.1016/j.biortech.2010.03.001
|
Zainal, N.H., Aziz, A.A., Ibrahim, M.F., IDRIS, J., Hassan, M.A., Bahrin, E.K., Jalani, N.F., Wafti, N.S.A., Abd-Aziz, S., 2018. Carbonisation-activation of oil palm kernel shell to produce activated carbon and methylene blue adsorption kinetics. J. Oil Palm Res. 30, 495–502.
|
Zaini, M.S.M., Jalil, M.J., 2021. A preliminary study of the sustainability of oil palm biomass as feedstock: performance and challenges of the gasification technology in Malaysia. Kemija U Ind. 70, 717–728.
|
Zaini, M.S.M., Syed-Hassan, S.S.A., 2018. Comparative effects of activation by CO2, steam and their sequential combinations on the pore structure of carbon material produced from Zncl2-treated oil palm kernel shell. Recent Innov. Chem. Eng. 11, 50–59.
|
Zaini, M.S.M., Syed-Hassan, S.S.A., 2022. Effects of different physical activation agents on adsorbent pore development and methane uptake. Recent Innov. Chem. Eng. 15, 127–137.
|
Zhang, T.Y., Walawender, W.P., Fan, L.T., 2010. Grain-based activated carbons for natural gas storage. Bioresour. Technol. 101, 1983–1991. doi: 10.1016/j.biortech.2009.10.046
|
Zhuang, Q.L., Kyotani, T., Tomita, A., 1995. Dynamics of surface oxygen complexes during carbon gasification with oxygen. Energy & Fuels 9, 630–634. doi: 10.1021/ef00052a009
|