Citation: | Jian Luo, Tianbiao Leo Liu. Electrochemical valorization of lignin: Status, challenges, and prospects[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 1-14. doi: 10.1016/j.jobab.2022.11.003 |
Abdel-Hamid, A.M., Solbiati, J.O., Cann, I.K.O., 2013. Insights into lignin degradation and its potential industrial applications. Adv. Appl. Microbiol. 82, 1–28.
|
Achyuthan, K.E., Achyuthan, A.M., Adams, P.D., Dirk, S.M., Harper, J.C., Simmons, B.A., Singh, A.K., 2010. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellul osic biofuels. Molecules 15, 8641–8688. doi: 10.3390/molecules15118641
|
Afanasenko, A., Barta, K., 2021. Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: present and perspectives. iScience 24, 102211. doi: 10.1016/j.isci.2021.102211
|
Akhade, S.A., Singh, N., Gutiérrez, O.Y., Lopez-Ruiz, J., Wang, H.M., Holladay, J.D., Liu, Y., Karkamkar, A., Weber, R.S., Padmaperuma, A.B., Lee, M.S., Whyatt, G.A., Elliott, M., Holladay, J.E., Male, J.L., Lercher, J.A., Rousseau, R., Glezakou, V.A., 2020. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419. doi: 10.1021/acs.chemrev.0c00158
|
Akhtari, S., Sowlati, T., Day, K., 2014. Economic feasibility of utilizing forest biomass in district energy systems: a review. Renew. Sustain. Energy Rev. 33, 117–127. doi: 10.1016/j.rser.2014.01.058
|
Alsarraf, J., Bilodeau, J.F., Legault, J., Simard, F., Pichette, A., 2020. Exploring the biomass-derived chemical space emerging from natural dihydrochalcones through the single-step hemisynthesis of antibacterial balsacones. ACS Sustain. Chem. Eng. 8, 6194–6199. doi: 10.1021/acssuschemeng.0c01545
|
Amidon, T.E., Liu, S.J., 2009. Water-based woody biorefinery. Biotechnol. Adv. 27, 542–550. doi: 10.1016/j.biotechadv.2009.04.012
|
Amorati R., Lucarini M., Mugnaini V., Pedulli G.F., Minisci F., Recupero F., Fontana F., Astolfi P., Greci L., 2003. Hydroxylamines as oxidation catalysts: thermochemical and kinetic studies. J. Org. Chem. 68, 1747–1754. doi: 10.1021/jo026660z
|
Andrews, E., Lopez-Ruiz, J.A., Egbert, J.D., Koh, K., Sanyal, U., Song, M., Li, D.S., Karkamkar, A.J., Derewinski, M.A., Holladay, J., Gutiérrez, O.Y., Holladay, J.D., 2020. Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds. ACS Sustain. Chem. Eng. 8, 4407–4418. doi: 10.1021/acssuschemeng.9b07041
|
Bailey, A., Brooks, H.M., 1946. Electrolytic oxidation of lignin. J. Am. Chem. Soc. 68, 445–446. doi: 10.1021/ja01207a029
|
Barron, A.R., Domeshek, M., Metz, L.E., Draucker, L.C., Strong, A.L., 2021. Carbon neutrality should not be the end goal: lessons for institutional climate action from U.S. higher education. One Earth 4, 1248–1258. doi: 10.1016/j.oneear.2021.08.014
|
Blondiaux, E., Bomon, J., Smoleń, M., Kaval, N., Lemière, F., Sergeyev, S., Diels, L., Sels, B., Maes, B.U.W., 2019. Bio-based aromatic amines from lignin-derived monomers. ACS Sustain. Chem. Eng. 7, 6906–6916. doi: 10.1021/acssuschemeng.8b06467
|
Bosque, I., Magallanes, G., Rigoulet, M., Kärkäs, M.D., Stephenson, C.R.J., 2017. Redox catalysis facilitates lignin depolymerization. ACS Cent. Sci. 3, 621–628. doi: 10.1021/acscentsci.7b00140
|
Bruno, F., Pham, M.C., Dubois, J.E., 1977. Polaromicrotribometric study of polyphenylene oxide film formation on metal electrodes by electrolysis of disubstituted phenols. Electrochim. Acta 22, 451–457. doi: 10.1016/0013-4686(77)85100-1
|
Cai, P., Fan, H.X., Cao, S., Qi, J., Zhang, S.M., Li, G., 2018. Electrochemical conversion of corn stover lignin to biomass-based chemicals between Cu/NiMoCo cathode and Pb/PbO2 anode in alkali solution. Electrochim. Acta 264, 128–139. doi: 10.1016/j.electacta.2018.01.111
|
Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W., 2014. Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16, 384–406. doi: 10.1039/C3GC41631C
|
Chakar, F.S., Ragauskas, A.J., 2004. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20, 131–141. doi: 10.1016/j.indcrop.2004.04.016
|
Chen, Z., Wan, C.X., 2017. Biological valorization strategies for converting lignin into fuels and chemicals. Renew. Sustain. Energy Rev. 73, 610–621. doi: 10.1016/j.rser.2017.01.166
|
d'Acunzo, F., Baiocco, P., Fabbrini, M., Galli, C., Gentili, P., 2002. The radical rate-determining step in the oxidation of benzyl alcohols by two N-OH-type mediators of laccase: the polar N-oxyl radical intermediate. New J. Chem. 26, 1791–1794. doi: 10.1039/B206928H
|
Diaz, L.A., Lister, T.E., Rae, C., Wood, N.D., 2018. Anion exchange membrane electrolyzers as alternative for upgrading of biomass-derived molecules. ACS Sustain. Chem. Eng. 6, 8458–8467. doi: 10.1021/acssuschemeng.8b00650
|
Du, X., Zhang, H.C., Sullivan, K.P., Gogoi, P., Deng, Y.L., 2020. Electrochemical lignin conversion. ChemSusChem 13, 4318–4343. doi: 10.1002/cssc.202001187
|
Dusselier, M., Mascal, M., Sels, B.F., 2014. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery. Top. Curr. Chem. 353, 1–40. doi: 10.1007/128_2014_544
|
Dutta, S., De, S., Saha, B., Alam, M.I., 2012. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal. Sci. Technol. 2, 2025–2036. doi: 10.1039/c2cy20235b
|
Elangovan, S., Afanasenko, A., Haupenthal, J., Sun, Z.H., Liu, Y.Z., Hirsch, A.K.H., Barta, K., 2019. From wood to tetrahydro-2-benzazepines in three waste-free steps: modular synthesis of biologically active lignin-derived scaffolds. ACS Cent. Sci. 5, 1707–1716. doi: 10.1021/acscentsci.9b00781
|
Evtuguin D.V., Neto C.P., Silva A.M., Domingues P.M., Amado F.M., Robert D., Faix O., 2001. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 49, 4252–4261. doi: 10.1021/jf010315d
|
Ezerskis, Z., Jusys, Z., 2001. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: a cyclic voltammetry study. J. Appl. Electrochem. 31, 1117–1124. doi: 10.1023/A:1012280216273
|
Fache, M., Boutevin, B., Caillol, S., 2016. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46. doi: 10.1021/acssuschemeng.5b01344
|
Flagg, J.A., 2015. Aiming for zero: what makes nations adopt carbon neutral pledges? Environ. Sociol. 1, 202–212. doi: 10.1080/23251042.2015.1041213
|
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav, J.S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P.M., de Vries, R.P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Górecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J.A., Kallen, N., Kersten, P., Kohler, A., Kües, U., Kumar, T.K.A., Kuo, A.L., LaButti, K., Larrondo, L.F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D.J., Morgenstern, I., Morin, E., Murat, C., Nagy, L.G., Nolan, M., Ohm, R.A., Patyshakuliyeva, A., Rokas, A., Ruiz-Dueñas, F.J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J.C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D.C., Martin, F., Cullen, D., Grigoriev, I.V., Hibbett, D.S., 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719. doi: 10.1126/science.1221748
|
Fu, J.T., Ren, Z., Bacsa, J., Musaev, D.G., Davies, H.M.L., 2018. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399. doi: 10.1038/s41586-018-0799-2
|
Garedew, M., Lam, C.H., Petitjean, L., Huang, S.Q., Song, B., Lin, F., Jackson, J.E., Saffron, C.M., Anastas, P.T., 2021. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chem. 23, 2868–2899. doi: 10.1039/d0gc04127k
|
Ghahremani, R., Farales, F., Bateni, F., Staser, J.A., 2020. Simultaneous hydrogen evolution and lignin depolymerization using NiSn electrocatalysts in a biomass-depolarized electrolyzer. J. Electrochem. Soc. 167, 043502. doi: 10.1149/1945-7111/ab7179
|
Gold, M.H., Wariishi, H., Valli, K., 1989. Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. Biocatalysis in Agricultural Biotechnology Chapter 9, pp. 127–140.
|
Grainger, A., Smith, G., 2021. The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Curr. Opin. Environ. Sustain. 49, 164–189. doi: 10.1016/j.cosust.2021.06.006
|
Holladay, J.E., White, J.F., Bozell, J.J., Johnson, D., 2007. Top value-added chemicals from biomass—Volume Ⅱ—results of screening for potential candidates from biorefinery lignin. Available at: www.energy.gov/sites/default/files/2014/03/f14/pnnl-16983.pdf. .
|
Horn, E.J., Rosen, B.R., Chen, Y., Tang, J.Z., Chen, K., Eastgate, M.D., Baran, P.S., 2016. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81. doi: 10.1038/nature17431
|
Hu, L.H., Pan, H., Zhou, Y.H., Zhang, M., 2011. Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: a brief review. BioResources 6, 3515–3525. doi: 10.15376/biores.6.3.Hu
|
Jia, Y.Q., Wen, Y.Q., Han, X., Qi, J., Liu, Z.H., Zhang, S.M., Li, G., 2018. Electrocatalytic degradation of rice straw lignin in alkaline solution through oxidation on a Ti/SnO2-Sb2O3/α-PbO2/β-PbO2 anode and reduction on an iron or tin doped titanium cathode. Catal. Sci. Technol. 8, 4665–4677. doi: 10.1039/c8cy00307f
|
Ko, M., Pham, L.T.M., Sa, Y.J., Woo, J., Nguyen, T.V.T., Kim, J.H., Oh, D., Sharma, P., Ryu, J., Shin, T.J., Joo, S.H., Kim, Y.H., Jang, J.W., 2019. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10, 1–10. doi: 10.1038/s41467-018-07882-8
|
Lan, C.X., Fan, H.X., Shang, Y.Y., Shen, D.Y., Li, G., 2020. Electrochemically catalyzed conversion of cornstalk lignin to aromatic compounds: an integrated process of anodic oxidation of a Pb/PbO2 electrode and hydrogenation of a nickel cathode in sodium hydroxide solution. Sustain. Energy Fuels 4, 1828–1836. doi: 10.1039/c9se00942f
|
Landucci, L.L., Luque, S., Ralph, S., 1995. Reaction of p-hydroxycinnamyl alcohols with transition metal salts. 2. preparation of guaiacyl/syringyl di-, tri-, and tetralignols. J. Wood Chem. Technol. 15, 493–513. doi: 10.1080/02773819508009522
|
Lee, K., Moon, S.H., 2003. Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J. Biotechnol. 102, 261–268. doi: 10.1016/S0168-1656(03)00027-0
|
Lewin, M.G., 1991. Wood Structure and Composition. CRC Press, Boca Raton, pp. 183–261.
|
Li, C.Z., Zhao, X.C., Wang, A.Q., Huber, G.W., Zhang, T., 2015. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624. doi: 10.1021/acs.chemrev.5b00155
|
Li, S.Y., Li, Z.J., Yu, H., Sytu, M.R., Wang, Y.X., Beeri, D., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2020. Solar-driven lignin oxidation via hydrogen atom transfer with a dye-sensitized TiO2 photoanode. ACS Energy Lett. 5, 777–784. doi: 10.1021/acsenergylett.9b02391
|
Li, T.F., Kasahara, T., He, J.F., Dettelbach, K.E., Sammis, G.M., Berlinguette, C.P., 2017. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390. doi: 10.1038/s41467-017-00420-y
|
Liu, C., Wu, S.L., Zhang, H.Y., Xiao, R., 2019. Catalytic oxidation of lignin to valuable biomass-based platform chemicals: a review. Fuel Process. Technol. 191, 181–201. doi: 10.1016/j.fuproc.2019.04.007
|
Liu, M.M., Wen, Y.Q., Qi, J., Zhang, S.M., Li, G., 2017. Fine chemicals prepared by bamboo lignin degradation through electrocatalytic redox between Cu cathode and Pb/PbO2 anode in alkali solution. ChemistrySelect 2, 4956–4962. doi: 10.1002/slct.201700881
|
Liu, W., You, W.Q., Gong, Y.T., Deng, Y.L., 2020. High-efficiency electrochemical hydrodeoxygenation of bio-phenols to hydrocarbon fuels by a superacid-noble metal particle dual-catalyst system. Energy Environ. Sci. 13, 917–927. doi: 10.1039/c9ee02783a
|
Lucas, F.W.S., Grim, R.G., Tacey, S.A., Downes, C.A., Hasse, J., Roman, A.M., Farberow, C.A., Schaidle, J.A., Holewinski, A., 2021. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett., 1205–1270. doi: 10.1021/acsenergylett.0c02692
|
Luo, J., Hu, B., Hu, M.W., Zhao, Y., Liu, T.L., 2019. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240. doi: 10.1021/acsenergylett.9b01332
|
Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield T., 2019. Global Warming of 1.5 ℃. Available at: www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_HR.pdf. .
|
May, A.S., Biddinger, E.J., 2020. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions. ACS Catal. 10, 3212–3221. doi: 10.1021/acscatal.9b05531
|
Mika, L.T., Cséfalvay, E., Németh, Á., 2018. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505–613. doi: 10.1021/acs.chemrev.7b00395
|
Möhle, S., Zirbes, M., Rodrigo, E., Gieshoff, T., Wiebe, A., Waldvogel, S.R., 2018. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. Engl. 57, 6018–6041. doi: 10.1002/anie.201712732
|
Natte, K., Narani, A., Goyal, V., Sarki, N., Jagadeesh, R.V., 2020. Synthesis of functional chemicals from lignin-derived monomers by selective organic transformations. Adv. Synth. Catal. 362, 5143–5169. doi: 10.1002/adsc.202000634
|
Nutting, J.E., Rafiee, M., Stahl, S.S., 2018. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885. doi: 10.1021/acs.chemrev.7b00763
|
Parpot, P., Bettencourt, A., Carvalho, A.M., Belgsir, E.M., 2000. Biomass conversion: attempted electrooxidation of lignin for vanillin production. J. Appl. Electrochem. 30, 727–731. doi: 10.1023/A:1004003613883
|
Patel, R.N., 2007. Biocatalysis in the pharmaceutical and biotechnology industries. Org. Process Res. Dev. 11, 296. doi: 10.1021/op7000222
|
Peng, T., Zhuang, T.T., Yan, Y., Qian, J., Dick, G.R., Behaghel de Bueren, J., Hung, S.F., Zhang, Y., Wang, Z.Y., Wicks, J., Garcia de Arquer, F.P., Abed, J., Wang, N., Sedighian Rasouli, A., Lee, G., Wang, M., He, D.P., Wang, Z., Liang, Z.X., Song, L., Wang, X., Chen, B., Ozden, A., Lum, Y., Leow, W.R., Luo, M.C., Meira, D.M., Ip, A.H., Luterbacher, J.S., Zhao, W., Sargent, E.H., 2021. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J. Am. Chem. Soc. 143, 17226–17235. doi: 10.1021/jacs.1c08348
|
Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C., 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Available at: digital.library.unt.edu/ark:/67531/metadc891530/m2/1/high_res_d/885984.pdf. .
|
Pollegioni, L., Tonin, F., Rosini, E., 2015. Lignin-degrading enzymes. FEBS J. 282, 1190–1213. doi: 10.1111/febs.13224
|
Rafiee, M., Alherech, M., Karlen, S.D., Stahl, S.S., 2019. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: polymer modification and depolymerization. J. Am. Chem. Soc. 141, 15266–15276. doi: 10.1021/jacs.9b07243
|
Rafiee, M., Wang, F., Hruszkewycz, D.P., Stahl, S.S., 2018. N-hydroxyphthalimide-mediated electrochemical iodination of methylarenes and comparison to electron-transfer-initiated C-H functionalization. J. Am. Chem. Soc. 140, 22–25. doi: 10.1021/jacs.7b09744
|
Ralph, J., Lundquist, K., Brunow, G., Lu, F.C., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., Boerjan, W., 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem. Rev. 3, 29–60. doi: 10.1023/B:PHYT.0000047809.65444.a4
|
Recupero, F., Punta, C., 2007. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem. Rev. 107, 3800–3842. doi: 10.1021/cr040170k
|
Rodrigues Pinto, P.C., Borges da Silva, E.A., Rodrigues, A.E., 2011. Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind. Eng. Chem. Res. 50, 741–748. doi: 10.1021/ie102132a
|
Ruppert, A.M., Weinberg, K., Palkovits, R., 2012. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. Engl. 51, 2564–2601. doi: 10.1002/anie.201105125
|
Sannami, Y., Kamitakahara, H., Takano, T., 2017. TEMPO-mediated electro-oxidation reactions of non-phenolic β-O-4-type lignin model compounds. Holzforschung 71, 109–117. doi: 10.1515/hf-2016-0117
|
Semmelhack, M.F., Chou, C.S., Cortes, D.A., 1983. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones. J. Am. Chem. Soc. 105, 4492–4494. doi: 10.1021/ja00351a070
|
In Shelke, S.A., Sigurdsson, S.T., Nakatani, K., Tor, Y., 2016. Site-directed spin labeling for EPR studies of nucleic acids. Modified Nucleic Acids. Nucleic Acids and Molecular Biology. Springer International Publishing, Cham, pp. 159–187.
|
Shiraishi, T., Takano, T., Kamitakahara, H., Nakatsubo, F., 2012. Studies on electro-oxidation of lignin and lignin model compounds. Part 2: N-Hydroxyphthalimide (NHPI)-mediated indirect electro-oxidation of non-phenolic lignin model compounds. Holzforschung 66, 311–315.
|
St Amant, A.H., Frazier, C.P., Newmeyer, B., Fruehauf, K.R., Read de Alaniz, J., 2016. Direct synthesis of anilines and nitrosobenzenes from phenols. Org. Biomol. Chem. 14, 5520–5524. doi: 10.1039/C6OB00073H
|
Sun, Z.H., Bottari, G., Afanasenko, A., Stuart, M.C.A., Deuss, P.J., Fridrich, B., Barta, K., 2018. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92. doi: 10.1038/s41929-017-0007-z
|
Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678. doi: 10.1021/acs.chemrev.7b00588
|
The Business Research Company, 2020. HIV drugs global market report 2020-30: Covid-19 implications and growth. Available at: www.researchandmarkets.com/reports/5017374/hiv-drugs-global-market-report-2020-30-covid-19. .
|
Tolba, R., Tian, M., Wen, J.L., Jiang, Z.H., Chen, A.C., 2010. Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J. Electroanal. Chem. 649, 9–15. doi: 10.1016/j.jelechem.2009.12.013
|
Tu, Q.S., Parvatker, A., Garedew, M., Harris, C., Eckelman, M., Zimmerman, J.B., Anastas, P.T., Lam, C.H., 2021. Electrocatalysis for chemical and fuel production: investigating climate change mitigation potential and economic feasibility. Environ. Sci. Technol. 55, 3240–3249. doi: 10.1021/acs.est.0c07309
|
Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W., 2010. Lignin biosynthesis and structure. Plant Physiol. 153, 895–905. doi: 10.1104/pp.110.155119
|
Wang, A.Q., Li, C.Z., Zheng, M.Y., Zhang, T., 2012. Heterogeneous catalysts for biomass conversion. The Role of Green Chemistry in Biomass Processing and Conversion. John Wiley & Sons, Inc., Hoboken, pp. 313–348.
|
Wang, W., Wen, X.H., 2009. Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. J. Environ. Sci. 21, 218–222. doi: 10.1016/S1001-0742(08)62254-8
|
Yang, C., Farmer, L. A., Pratt, D.A., Maldonado, S., Stephenson, C.R.J., 2021. Mechanism of electrochemical generation and decomposition of phthalimide-N-oxyl. J. Am. Chem. Soc. 143, 10324-10332. doi: 10.1021/jacs.1c04181
|
Yang, C., Maldonado, S., Stephenson, C. R. J., 2021. Electrocatalytic lignin oxidation. ACS Catal. 11, 10104-10114. doi: 10.1021/acscatal.1c01767
|
Yue, F.X., Lu, F.C., Sun, R.C., Ralph, J., 2012. Synthesis and characterization of new 5-linked pinoresinol lignin models. Chem. Eur. J. 18, 16402–16410. doi: 10.1002/chem.201201506
|
Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599. doi: 10.1021/cr900354u
|
Zhou, H., Li, Z.H., Ma, L.N., Duan, H.H., 2022. Electrocatalytic oxidative upgrading of biomass platform chemicals: from the aspect of reaction mechanism. Chem. Commun. 58, 897–907. doi: 10.1039/d1cc06254a
|