Volume 8 Issue 2
May  2023
Turn off MathJax
Article Contents
Yi Tian, Xiaoting Zhu, Shuolin Zhou, Wenguang Zhao, Qiong Xu, Xianxiang Liu. Efficient synthesis of alkyl levulinates fuel additives using sulfonic acid functionalized polystyrene coated coal fly ash catalyst[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 198-213. doi: 10.1016/j.jobab.2023.01.003
Citation: Yi Tian, Xiaoting Zhu, Shuolin Zhou, Wenguang Zhao, Qiong Xu, Xianxiang Liu. Efficient synthesis of alkyl levulinates fuel additives using sulfonic acid functionalized polystyrene coated coal fly ash catalyst[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 198-213. doi: 10.1016/j.jobab.2023.01.003

Efficient synthesis of alkyl levulinates fuel additives using sulfonic acid functionalized polystyrene coated coal fly ash catalyst

doi: 10.1016/j.jobab.2023.01.003
More Information
  • In this study, sulfonic acid functionalized polystyrene coated coal fly ash catalyst (CFA@PS-SO3H) was designed and prepared by the post-synthesis method, which exhibited excellent catalytic performance for esterification of levulinic acid (LA) to afford alkyl levulinates. Four significant factors, including reaction time, catalyst dosage, alcohol-to-acid molar ratio and reaction temperature were evaluated systematically. Response surface methodology based on Box-Behnken design (BBD) was carried out to determine the optimal parameters. The maximum yield could reach 99.6% under the mild conditions. Furthermore, kinetics of the esterification reaction between levulinic acid and n-butanol were analyzed and the activation energies of the first and second step of esterification reaction were found to 52.18 and 59.81 kJ/mol, respectively. The CFA@PS-SO3H also showed high catalytic activity for the esterification of levulinic acid with other linear alcohols, which made it a low cost, environmentally friendly and promising solid catalyst for the synthesis of alkyl levulinates.


  • Declaration of Competing Interest There are no conflicts to declare.
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.01.003.
    Supplementary materials
  • loading
  • Advani, J.H., Singh, A.S., Khan, N.H., Bajaj, H.C., Biradar, A.V., 2020. Black yet green: sulfonic acid functionalized carbon as an efficent catalyst for highly selective isomerization of α-pinene oxide to trans-carveol. Appl. Catal. B Environ. 268, 118456. doi: 10.1016/j.apcatb.2019.118456
    Ahmad, E., Khan, T.S., Alam, M.I., Pant, K.K., Ali Haider, M., 2020. Understanding reaction kinetics, deprotonation and solvation of brønsted acidic protons in heteropolyacid catalyzed synthesis of biorenewable alkyl levulinates. Chem. Eng. J. 400, 125916. doi: 10.1016/j.cej.2020.125916
    Amoni, B.C., Freitas, A.D.L., Bessa, R.A., Oliveira, C.P., Bastos-Neto, M., Azevedo, D.C.S., Lucena, S.M.P., Sasaki, J.M., Soares, J.B., Soares, S.A., Loiola, A.R., 2022. Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Mater. Chem. Phys. 275, 125197. doi: 10.1016/j.matchemphys.2021.125197
    Arora, S., Gosu, V., Subbaramaiah, V., Hameed, B.H., 2021. Lithium loaded coal fly ash as sustainable and effective catalyst for the synthesis of glycerol carbonate from glycerol. J. Environ. Chem. Eng. 9, 105999. doi: 10.1016/j.jece.2021.105999
    Bart, H.J., Reidetschlager, J., Schatka, K., Lehmann, A., 1994. Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind. Eng. Chem. Res. 33, 21–25. doi: 10.1021/ie00025a004
    Bedard, J., Chiang, H., Bhan, A., 2012. Kinetics and mechanism of acetic acid esterification with ethanol on zeolites. J. Catal. 290, 210–219. doi: 10.1016/j.jcat.2012.03.020
    Benedetti, M., Cafiero, L., De Angelis, D., Dell'Era, A., Pasquali, M., Stendardo, S., Tuffi, R., Ciprioti, S.V., 2017. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification. Front. Environ. Sci. Eng. 11, 11.
    Blissett, R.S., Rowson, N.A., 2012. A review of the multi-component utilisation of coal fly ash. Fuel 97, 1–23. doi: 10.1016/j.fuel.2012.03.024
    Chaffey, D.R., Bere, T., Davies, T.E., Apperley, D.C., Taylor, S.H., Graham, A.E., 2021. Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. Appl. Catal. B Environ. 293, 120219. doi: 10.1016/j.apcatb.2021.120219
    Chatterjee, A., Hu, X.J., Leung-Yuk Lam, F., 2019. Modified coal fly ash waste as an efficient heterogeneous catalyst for dehydration of xylose to furfural in biphasic medium. Fuel 239, 726–736. doi: 10.1016/j.fuel.2018.10.138
    Cui, R.J., Ma, S.X., Yang, B.C., Li, S.C., Pei, T., Li, J., Wang, J., Sun, S.J., Mi, C.F., 2020. Simultaneous removal of NOx and SO2 with H2O2 over silica sulfuric acid catalyst synthesized from fly ash. Waste Manag. 109, 65–74. doi: 10.1016/j.wasman.2020.04.049
    De Lisi, R., Goffredi, M., Turco Liveri, V., 1980. Proton solvation in the lower aliphatic alcohols with emphasis on isopropyl alcohol and tert-butyl alcohol. J. Phys. Chem. 84, 307–309. doi: 10.1021/j100440a018
    Démolis, A., Essayem, N., Rataboul, F., 2014. Synthesis and applications of alkyl levulinates. ACS Sustainable Chem. Eng. 2, 1338–1352. doi: 10.1021/sc500082n
    Dharne, S., Bokade, V.V., 2011. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. J. Nat. Gas Chem. 20, 18–24. doi: 10.1016/S1003-9953(10)60147-8
    Dong, X.X., Jin, B.S., Cao, S.S., Meng, F.Y., Chen, T., Ding, Q.F., Tong, C., 2020. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO2 methanation. Waste Manag. 107, 244–251. doi: 10.1016/j.wasman.2020.04.014
    Fernández-Jiménez, A., Palomo, A., 2005. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 86, 207–214. doi: 10.1016/j.micromeso.2005.05.057
    Gao, Y.C., Jiang, J.G., Meng, Y., Aihemaiti, A., Ju, T.Y., Chen, X.J., Yan, F., 2020. A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming. Renew. Energy 149, 786–793. doi: 10.1016/j.renene.2019.12.096
    Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., Sanchez, J.Y., 2001. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. J. Membr. Sci. 185, 59–71. doi: 10.1016/S0376-7388(00)00634-7
    Gollakota, A.R.K., Volli, V., Shu, C.M., 2019. Progressive utilisation prospects of coal fly ash: a review. Sci. Total Environ. 672, 951–989. doi: 10.1016/j.scitotenv.2019.03.337
    Gong, L., Xu, Z.Y., Dong, J.J., Li, H., Han, R.Z., Xu, G.C., Ni, Y., 2019. Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresour. Technol. 293, 122065. doi: 10.1016/j.biortech.2019.122065
    Hussain, Z., Chang, N., Sun, J.Q., Xiang, S.M., Ayaz, T., Zhang, H., Wang, H.T., 2022. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. J. Hazard. Mater. 422, 126778. doi: 10.1016/j.jhazmat.2021.126778
    Jha, B., Koshy, N., Singh, D.N., 2015. Establishing two-stage interaction between fly ash and NaOH by X-ray and infrared analyses. Front. Environ. Sci. Eng. 9, 216–221. doi: 10.1007/s11783-014-0630-8
    Ju, T.Y., Meng, Y., Han, S.Y., Lin, L., Jiang, J.G., 2021. On the state of the art of crystalline structure reconstruction of coal fly ash: a focus on zeolites. Chemosphere 283, 131010. doi: 10.1016/j.chemosphere.2021.131010
    Khare, P., Baruah, B.P., 2010. Structural parameters of perhydrous Indian coals. Int. J. Coal Prep. Util. 30, 44–67. doi: 10.1080/19392691003781616
    Khatri, C., Mishra, M.K., Rani, A., 2010. Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions. Fuel Process. Technol. 91, 1288–1295. doi: 10.1016/j.fuproc.2010.04.011
    Khatri, C., Rani, A., 2008. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel 87, 2886–2892. doi: 10.1016/j.fuel.2008.04.011
    Kokare, M.B., Ranjani, V., Mathpati, C.S., 2018. Response surface optimization, kinetic study and process design of n-butyl levulinate synthesis. Chem. Eng. Res. Des. 137, 577–588. doi: 10.1016/j.cherd.2018.07.036
    Kučera, F., Jančář, J., 1998. Homogeneous and heterogeneous sulfonation of polymers: a review. Polym. Eng. Sci. 38, 783–792. doi: 10.1002/pen.10244
    Lee, Y.R., Soe, J.T., Zhang, S.Q., Ahn, J.W., Park, M.B., Ahn, W.S., 2017. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: a mini review. Chem. Eng. J. 317, 821–843 doi: 10.1016/j.cej.2017.02.124
    Li, Z.P., Xu, G., Shi, X.M., 2021. Reactivity of coal fly ash used in cementitious binder systems: a state-of-the-art overview. Fuel 301, 121031. doi: 10.1016/j.fuel.2021.121031
    Ma, L.L., Han, Y., Sun, K.A., Lu, J., Ding, J.C., 2015. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy Convers. Manag. 98, 46–53. doi: 10.1016/j.enconman.2015.03.092
    Maggi, R., Shiju, N.R., Santacroce, V., Maestri, G., Bigi, F., Rothenberg, G., 2016. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols. Beilstein J. Org. Chem. 12, 2173–2180. doi: 10.3762/bjoc.12.207
    Maheria, K.C., Kozinski, J., Dalai, A., 2013. Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143, 1220–1225. doi: 10.1007/s10562-013-1041-3
    Melero, J.A., Morales, G., Iglesias, J., Paniagua, M., Hernández, B., Penedo, S., 2013. Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Appl. Catal. A Gen. 466, 116–122. doi: 10.1016/j.apcata.2013.06.035
    Mushtaq, F., Zahid, M., Ahmad Bhatti, I., Nasir, S., Hussain, T., 2019. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manag. 240, 27–46. doi: 10.1016/j.jenvman.2019.03.054
    Nandiwale, K.Y., Bokade, V.V., 2015. Esterification of renewable levulinic acid to n-butyl levulinate over modified H-ZSM-5. Chem. Eng. Technol. 38, 246–252. doi: 10.1002/ceat.201400326
    Nasef, M.M., Saidi, H., 2006. Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis. Appl. Surf. Sci. 252, 3073–3084. doi: 10.1016/j.apsusc.2005.05.013
    Padilla, R., Jørgensen, M.S.B., Paixão, M.W., Nielsen, M., 2019. Efficient catalytic hydrogenation of alkyl levulinates to γ-valerolactone. Green Chem. 21, 5195–5200. doi: 10.1039/c9gc01651a
    Peixoto, A.F., Silva, S.M., Costa, P., Santos, A.C., Valentim, B., Lázaro-Martínez, J.M., Freire, C., 2020. Acid functionalized coal fly ashes: new solid catalysts for levulinic acid esterification. Catal. Today 357, 74–83. doi: 10.1016/j.cattod.2019.07.038
    Poblete, R., Cortes, E., Munizaga-Plaza, J.A., 2022. Carbon dioxide emission control of a vermicompost process using fly ash. Sci. Total Environ. 803, 150069. doi: 10.1016/j.scitotenv.2021.150069
    Qin, D.R., 2001. Application of Fourier transform infrared spectrometry and chemometrics to analysis of polystyrene and copolymerized styrene in ethylene-styrene copolymers. Appl. Spectrosc. 55, 871–876. doi: 10.1366/0003702011952668
    Senshu, K., Furuzono, T., Koshizaki, N., Yamashita, S., Matsumoto, T., Kishida, A., Akashi, M., 1997. Novel functional polymers: poly(dimethylsiloxane)-polyamide multiblock copolymer. 8. surface studies of aramid-silicone resin by means of XPS, static SIMS, and TEM. Macromolecules 30, 4421–4428. doi: 10.1021/ma9616219
    Shrivastav, G., Khan, T., Agarwal, M., Haider, M., 2017. Reformulation of gasoline to replace aromatics by biomass-derived alkyl levulinates. ACS Sustain. Chem. Eng. 5, 7118–7127. doi: 10.1021/acssuschemeng.7b01316
    Sunitha, S., Kanjilal, S., Reddy, P.S., Prasad, R.B.N., 2007. Liquid-liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2. Tetrahedron Lett. 48, 6962–6965. doi: 10.1016/j.tetlet.2007.07.159
    Teixeira, E.R., Camões, A., Branco, F.G., Aguiar, J.B., Fangueiro, R., 2019. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Manag. 94, 39–48. doi: 10.1016/j.wasman.2019.05.044
    Tejero, M.A., Ramírez, E., Fité, C., Tejero, J., Cunill, F., 2016. Esterification of levulinic acid with butanol over ion exchange resins. Appl. Catal. A Gen. 517, 56–66. doi: 10.1016/j.apcata.2016.02.032
    Tian, Y., Zhang, R.Q., Zhao, W.G., Wen, S., Xiang, Y.P., Liu, X.X., 2020. A new sulfonic acid-functionalized organic polymer catalyst for the synthesis of biomass-derived alkyl levulinates. Catal. Lett. 150, 3553–3560. doi: 10.1007/s10562-020-03253-5
    Um, N., Jeon, T.W., 2021. Pretreatment method for the utilization of the coal ash landfilled in ash ponds. Process. Saf. Environ. Prot. 153, 192–204. doi: 10.1016/j.psep.2021.07.013
    Wang, L., Huang, X.R., Zhang, J.X., Wu, F., Liu, F.H., Zhao, H.H., Hu, X.F., Zhao, X., Li, J.T., Ju, X.D., Ji, P.H., 2021. Stabilization of lead in waste water and farmland soil using modified coal fly ash. J. Clean. Prod. 314, 127957. doi: 10.1016/j.jclepro.2021.127957
    Wang, N.N., Sun, X.Y., Zhao, Q., Yang, Y., Wang, P., 2020. Leachability and adverse effects of coal fly ash: a review. J. Hazard. Mater. 396, 122725. doi: 10.1016/j.jhazmat.2020.122725
    Ward, A.J., Short, R.D., 1994. A spectroscopic analysis of plasma polymers prepared from a series of vinyl sulphones. Surf. Interface Anal. 22, 477–482. doi: 10.1002/sia.7402201101
    Wolska, J., Walkowiak-Kulikowska, J., 2020. On the sulfonation of fluorinated aromatic polymers: synthesis, characterization and effect of fluorinated side groups on sulfonation degree. Eur. Polym. J. 129, 109635. doi: 10.1016/j.eurpolymj.2020.109635
    Xu, Y.L., Guo, P.K., Chang, C., Li, P., Zhao, S.Q., Xu, G.Z., 2020. Aluminum chloride-catalyzed conversion of levulinic acid to methyl levulinate: optimization and kinetics. J. Chem. Technol. Biotechnol. 95, 2251–2260. doi: 10.1002/jctb.6413
    Yan, L., Yao, Q., Fu, Y., 2017. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chem. 19, 5527–5547. doi: 10.1039/C7GC02503C
    Yang, J.F., Li, G.Y., Zhang, L.L., Zhang, S.F., 2018. Efficient production of N-butyl levulinate fuel additive from levulinic acid using amorphous carbon enriched with oxygenated groups. Catalysts 8, 14. doi: 10.3390/catal8010014
    Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q., 2015. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 141, 105–121. doi: 10.1016/j.earscirev.2014.11.016
    Yi, X.H., Al-Shaal, M.G., Ciptonugroho, W., Delidovich, I., Wang, X.H., Palkovits, R., 2017. Synthesis of butyl levulinate based on α-Angelica lactone in the presence of easily separable heteropoly acid catalysts. ChemSusChem 10, 1494–1500. doi: 10.1002/cssc.201601882
    Zainol, M.M., Amin, N.A.S., Asmadi, M., 2019. Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst. Renew. Energy 130, 547–557. doi: 10.1016/j.renene.2018.06.085
    Zhang, X.M., Zhang, L., Yang, Q.H., 2014. Designed synthesis of sulfonated polystyrene/mesoporous silica hollow nanospheres as efficient solid acid catalysts. J. Mater. Chem. A 2, 7546–7554. doi: 10.1039/C4TA00241E
    Zhao, H.H., Huang, X.R., Liu, F.H., Hu, X.F., Zhao, X., Wang, L., Gao, P.C., Li, X.Y., Ji, P.H., 2021a. Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb. Environ. Pollut. 269, 116198. doi: 10.1016/j.envpol.2020.116198
    Zhao, W.G., Ding, H., Tian, Y., Xu, Q., Liu, X.X., 2021b. Efficient alcoholysis of furfuryl alcohol to n-butyl levulinate catalyzed by 5-sulfosalicylic acid. J. Chin. Chem. Soc. 68, 1339–1345. doi: 10.1002/jccs.202000342
    Zhou, S.L., Lai, J.H., Liu, X.X., Huang, G., You, G.L., Xu, Q., Yin, D.L., 2022. Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy Environ. 7, 257–265. doi: 10.1016/j.gee.2020.09.009
    Zhou, S.L., Liu, X.X., Lai, J.H., Zheng, M., Liu, W.Z., Xu, Q., Yin, D.L., 2019. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol. Chem. Eng. J. 361, 571–577. doi: 10.1016/j.cej.2018.12.111
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article views (52) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint