Citation: | Yi Tian, Xiaoting Zhu, Shuolin Zhou, Wenguang Zhao, Qiong Xu, Xianxiang Liu. Efficient synthesis of alkyl levulinates fuel additives using sulfonic acid functionalized polystyrene coated coal fly ash catalyst[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 198-213. doi: 10.1016/j.jobab.2023.01.003 |
Advani, J.H., Singh, A.S., Khan, N.H., Bajaj, H.C., Biradar, A.V., 2020. Black yet green: sulfonic acid functionalized carbon as an efficent catalyst for highly selective isomerization of α-pinene oxide to trans-carveol. Appl. Catal. B Environ. 268, 118456. doi: 10.1016/j.apcatb.2019.118456
|
Ahmad, E., Khan, T.S., Alam, M.I., Pant, K.K., Ali Haider, M., 2020. Understanding reaction kinetics, deprotonation and solvation of brønsted acidic protons in heteropolyacid catalyzed synthesis of biorenewable alkyl levulinates. Chem. Eng. J. 400, 125916. doi: 10.1016/j.cej.2020.125916
|
Amoni, B.C., Freitas, A.D.L., Bessa, R.A., Oliveira, C.P., Bastos-Neto, M., Azevedo, D.C.S., Lucena, S.M.P., Sasaki, J.M., Soares, J.B., Soares, S.A., Loiola, A.R., 2022. Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Mater. Chem. Phys. 275, 125197. doi: 10.1016/j.matchemphys.2021.125197
|
Arora, S., Gosu, V., Subbaramaiah, V., Hameed, B.H., 2021. Lithium loaded coal fly ash as sustainable and effective catalyst for the synthesis of glycerol carbonate from glycerol. J. Environ. Chem. Eng. 9, 105999. doi: 10.1016/j.jece.2021.105999
|
Bart, H.J., Reidetschlager, J., Schatka, K., Lehmann, A., 1994. Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis. Ind. Eng. Chem. Res. 33, 21–25. doi: 10.1021/ie00025a004
|
Bedard, J., Chiang, H., Bhan, A., 2012. Kinetics and mechanism of acetic acid esterification with ethanol on zeolites. J. Catal. 290, 210–219. doi: 10.1016/j.jcat.2012.03.020
|
Benedetti, M., Cafiero, L., De Angelis, D., Dell'Era, A., Pasquali, M., Stendardo, S., Tuffi, R., Ciprioti, S.V., 2017. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification. Front. Environ. Sci. Eng. 11, 11.
|
Blissett, R.S., Rowson, N.A., 2012. A review of the multi-component utilisation of coal fly ash. Fuel 97, 1–23. doi: 10.1016/j.fuel.2012.03.024
|
Chaffey, D.R., Bere, T., Davies, T.E., Apperley, D.C., Taylor, S.H., Graham, A.E., 2021. Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. Appl. Catal. B Environ. 293, 120219. doi: 10.1016/j.apcatb.2021.120219
|
Chatterjee, A., Hu, X.J., Leung-Yuk Lam, F., 2019. Modified coal fly ash waste as an efficient heterogeneous catalyst for dehydration of xylose to furfural in biphasic medium. Fuel 239, 726–736. doi: 10.1016/j.fuel.2018.10.138
|
Cui, R.J., Ma, S.X., Yang, B.C., Li, S.C., Pei, T., Li, J., Wang, J., Sun, S.J., Mi, C.F., 2020. Simultaneous removal of NOx and SO2 with H2O2 over silica sulfuric acid catalyst synthesized from fly ash. Waste Manag. 109, 65–74. doi: 10.1016/j.wasman.2020.04.049
|
De Lisi, R., Goffredi, M., Turco Liveri, V., 1980. Proton solvation in the lower aliphatic alcohols with emphasis on isopropyl alcohol and tert-butyl alcohol. J. Phys. Chem. 84, 307–309. doi: 10.1021/j100440a018
|
Démolis, A., Essayem, N., Rataboul, F., 2014. Synthesis and applications of alkyl levulinates. ACS Sustainable Chem. Eng. 2, 1338–1352. doi: 10.1021/sc500082n
|
Dharne, S., Bokade, V.V., 2011. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. J. Nat. Gas Chem. 20, 18–24. doi: 10.1016/S1003-9953(10)60147-8
|
Dong, X.X., Jin, B.S., Cao, S.S., Meng, F.Y., Chen, T., Ding, Q.F., Tong, C., 2020. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO2 methanation. Waste Manag. 107, 244–251. doi: 10.1016/j.wasman.2020.04.014
|
Fernández-Jiménez, A., Palomo, A., 2005. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 86, 207–214. doi: 10.1016/j.micromeso.2005.05.057
|
Gao, Y.C., Jiang, J.G., Meng, Y., Aihemaiti, A., Ju, T.Y., Chen, X.J., Yan, F., 2020. A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming. Renew. Energy 149, 786–793. doi: 10.1016/j.renene.2019.12.096
|
Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., Sanchez, J.Y., 2001. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. J. Membr. Sci. 185, 59–71. doi: 10.1016/S0376-7388(00)00634-7
|
Gollakota, A.R.K., Volli, V., Shu, C.M., 2019. Progressive utilisation prospects of coal fly ash: a review. Sci. Total Environ. 672, 951–989. doi: 10.1016/j.scitotenv.2019.03.337
|
Gong, L., Xu, Z.Y., Dong, J.J., Li, H., Han, R.Z., Xu, G.C., Ni, Y., 2019. Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresour. Technol. 293, 122065. doi: 10.1016/j.biortech.2019.122065
|
Hussain, Z., Chang, N., Sun, J.Q., Xiang, S.M., Ayaz, T., Zhang, H., Wang, H.T., 2022. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. J. Hazard. Mater. 422, 126778. doi: 10.1016/j.jhazmat.2021.126778
|
Jha, B., Koshy, N., Singh, D.N., 2015. Establishing two-stage interaction between fly ash and NaOH by X-ray and infrared analyses. Front. Environ. Sci. Eng. 9, 216–221. doi: 10.1007/s11783-014-0630-8
|
Ju, T.Y., Meng, Y., Han, S.Y., Lin, L., Jiang, J.G., 2021. On the state of the art of crystalline structure reconstruction of coal fly ash: a focus on zeolites. Chemosphere 283, 131010. doi: 10.1016/j.chemosphere.2021.131010
|
Khare, P., Baruah, B.P., 2010. Structural parameters of perhydrous Indian coals. Int. J. Coal Prep. Util. 30, 44–67. doi: 10.1080/19392691003781616
|
Khatri, C., Mishra, M.K., Rani, A., 2010. Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions. Fuel Process. Technol. 91, 1288–1295. doi: 10.1016/j.fuproc.2010.04.011
|
Khatri, C., Rani, A., 2008. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel 87, 2886–2892. doi: 10.1016/j.fuel.2008.04.011
|
Kokare, M.B., Ranjani, V., Mathpati, C.S., 2018. Response surface optimization, kinetic study and process design of n-butyl levulinate synthesis. Chem. Eng. Res. Des. 137, 577–588. doi: 10.1016/j.cherd.2018.07.036
|
Kučera, F., Jančář, J., 1998. Homogeneous and heterogeneous sulfonation of polymers: a review. Polym. Eng. Sci. 38, 783–792. doi: 10.1002/pen.10244
|
Lee, Y.R., Soe, J.T., Zhang, S.Q., Ahn, J.W., Park, M.B., Ahn, W.S., 2017. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: a mini review. Chem. Eng. J. 317, 821–843 doi: 10.1016/j.cej.2017.02.124
|
Li, Z.P., Xu, G., Shi, X.M., 2021. Reactivity of coal fly ash used in cementitious binder systems: a state-of-the-art overview. Fuel 301, 121031. doi: 10.1016/j.fuel.2021.121031
|
Ma, L.L., Han, Y., Sun, K.A., Lu, J., Ding, J.C., 2015. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy Convers. Manag. 98, 46–53. doi: 10.1016/j.enconman.2015.03.092
|
Maggi, R., Shiju, N.R., Santacroce, V., Maestri, G., Bigi, F., Rothenberg, G., 2016. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols. Beilstein J. Org. Chem. 12, 2173–2180. doi: 10.3762/bjoc.12.207
|
Maheria, K.C., Kozinski, J., Dalai, A., 2013. Esterification of levulinic acid to n-butyl levulinate over various acidic zeolites. Catal Lett 143, 1220–1225. doi: 10.1007/s10562-013-1041-3
|
Melero, J.A., Morales, G., Iglesias, J., Paniagua, M., Hernández, B., Penedo, S., 2013. Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Appl. Catal. A Gen. 466, 116–122. doi: 10.1016/j.apcata.2013.06.035
|
Mushtaq, F., Zahid, M., Ahmad Bhatti, I., Nasir, S., Hussain, T., 2019. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manag. 240, 27–46. doi: 10.1016/j.jenvman.2019.03.054
|
Nandiwale, K.Y., Bokade, V.V., 2015. Esterification of renewable levulinic acid to n-butyl levulinate over modified H-ZSM-5. Chem. Eng. Technol. 38, 246–252. doi: 10.1002/ceat.201400326
|
Nasef, M.M., Saidi, H., 2006. Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis. Appl. Surf. Sci. 252, 3073–3084. doi: 10.1016/j.apsusc.2005.05.013
|
Padilla, R., Jørgensen, M.S.B., Paixão, M.W., Nielsen, M., 2019. Efficient catalytic hydrogenation of alkyl levulinates to γ-valerolactone. Green Chem. 21, 5195–5200. doi: 10.1039/c9gc01651a
|
Peixoto, A.F., Silva, S.M., Costa, P., Santos, A.C., Valentim, B., Lázaro-Martínez, J.M., Freire, C., 2020. Acid functionalized coal fly ashes: new solid catalysts for levulinic acid esterification. Catal. Today 357, 74–83. doi: 10.1016/j.cattod.2019.07.038
|
Poblete, R., Cortes, E., Munizaga-Plaza, J.A., 2022. Carbon dioxide emission control of a vermicompost process using fly ash. Sci. Total Environ. 803, 150069. doi: 10.1016/j.scitotenv.2021.150069
|
Qin, D.R., 2001. Application of Fourier transform infrared spectrometry and chemometrics to analysis of polystyrene and copolymerized styrene in ethylene-styrene copolymers. Appl. Spectrosc. 55, 871–876. doi: 10.1366/0003702011952668
|
Senshu, K., Furuzono, T., Koshizaki, N., Yamashita, S., Matsumoto, T., Kishida, A., Akashi, M., 1997. Novel functional polymers: poly(dimethylsiloxane)-polyamide multiblock copolymer. 8. surface studies of aramid-silicone resin by means of XPS, static SIMS, and TEM. Macromolecules 30, 4421–4428. doi: 10.1021/ma9616219
|
Shrivastav, G., Khan, T., Agarwal, M., Haider, M., 2017. Reformulation of gasoline to replace aromatics by biomass-derived alkyl levulinates. ACS Sustain. Chem. Eng. 5, 7118–7127. doi: 10.1021/acssuschemeng.7b01316
|
Sunitha, S., Kanjilal, S., Reddy, P.S., Prasad, R.B.N., 2007. Liquid-liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2. Tetrahedron Lett. 48, 6962–6965. doi: 10.1016/j.tetlet.2007.07.159
|
Teixeira, E.R., Camões, A., Branco, F.G., Aguiar, J.B., Fangueiro, R., 2019. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Manag. 94, 39–48. doi: 10.1016/j.wasman.2019.05.044
|
Tejero, M.A., Ramírez, E., Fité, C., Tejero, J., Cunill, F., 2016. Esterification of levulinic acid with butanol over ion exchange resins. Appl. Catal. A Gen. 517, 56–66. doi: 10.1016/j.apcata.2016.02.032
|
Tian, Y., Zhang, R.Q., Zhao, W.G., Wen, S., Xiang, Y.P., Liu, X.X., 2020. A new sulfonic acid-functionalized organic polymer catalyst for the synthesis of biomass-derived alkyl levulinates. Catal. Lett. 150, 3553–3560. doi: 10.1007/s10562-020-03253-5
|
Um, N., Jeon, T.W., 2021. Pretreatment method for the utilization of the coal ash landfilled in ash ponds. Process. Saf. Environ. Prot. 153, 192–204. doi: 10.1016/j.psep.2021.07.013
|
Wang, L., Huang, X.R., Zhang, J.X., Wu, F., Liu, F.H., Zhao, H.H., Hu, X.F., Zhao, X., Li, J.T., Ju, X.D., Ji, P.H., 2021. Stabilization of lead in waste water and farmland soil using modified coal fly ash. J. Clean. Prod. 314, 127957. doi: 10.1016/j.jclepro.2021.127957
|
Wang, N.N., Sun, X.Y., Zhao, Q., Yang, Y., Wang, P., 2020. Leachability and adverse effects of coal fly ash: a review. J. Hazard. Mater. 396, 122725. doi: 10.1016/j.jhazmat.2020.122725
|
Ward, A.J., Short, R.D., 1994. A spectroscopic analysis of plasma polymers prepared from a series of vinyl sulphones. Surf. Interface Anal. 22, 477–482. doi: 10.1002/sia.7402201101
|
Wolska, J., Walkowiak-Kulikowska, J., 2020. On the sulfonation of fluorinated aromatic polymers: synthesis, characterization and effect of fluorinated side groups on sulfonation degree. Eur. Polym. J. 129, 109635. doi: 10.1016/j.eurpolymj.2020.109635
|
Xu, Y.L., Guo, P.K., Chang, C., Li, P., Zhao, S.Q., Xu, G.Z., 2020. Aluminum chloride-catalyzed conversion of levulinic acid to methyl levulinate: optimization and kinetics. J. Chem. Technol. Biotechnol. 95, 2251–2260. doi: 10.1002/jctb.6413
|
Yan, L., Yao, Q., Fu, Y., 2017. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chem. 19, 5527–5547. doi: 10.1039/C7GC02503C
|
Yang, J.F., Li, G.Y., Zhang, L.L., Zhang, S.F., 2018. Efficient production of N-butyl levulinate fuel additive from levulinic acid using amorphous carbon enriched with oxygenated groups. Catalysts 8, 14. doi: 10.3390/catal8010014
|
Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q., 2015. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 141, 105–121. doi: 10.1016/j.earscirev.2014.11.016
|
Yi, X.H., Al-Shaal, M.G., Ciptonugroho, W., Delidovich, I., Wang, X.H., Palkovits, R., 2017. Synthesis of butyl levulinate based on α-Angelica lactone in the presence of easily separable heteropoly acid catalysts. ChemSusChem 10, 1494–1500. doi: 10.1002/cssc.201601882
|
Zainol, M.M., Amin, N.A.S., Asmadi, M., 2019. Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst. Renew. Energy 130, 547–557. doi: 10.1016/j.renene.2018.06.085
|
Zhang, X.M., Zhang, L., Yang, Q.H., 2014. Designed synthesis of sulfonated polystyrene/mesoporous silica hollow nanospheres as efficient solid acid catalysts. J. Mater. Chem. A 2, 7546–7554. doi: 10.1039/C4TA00241E
|
Zhao, H.H., Huang, X.R., Liu, F.H., Hu, X.F., Zhao, X., Wang, L., Gao, P.C., Li, X.Y., Ji, P.H., 2021a. Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb. Environ. Pollut. 269, 116198. doi: 10.1016/j.envpol.2020.116198
|
Zhao, W.G., Ding, H., Tian, Y., Xu, Q., Liu, X.X., 2021b. Efficient alcoholysis of furfuryl alcohol to n-butyl levulinate catalyzed by 5-sulfosalicylic acid. J. Chin. Chem. Soc. 68, 1339–1345. doi: 10.1002/jccs.202000342
|
Zhou, S.L., Lai, J.H., Liu, X.X., Huang, G., You, G.L., Xu, Q., Yin, D.L., 2022. Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy Environ. 7, 257–265. doi: 10.1016/j.gee.2020.09.009
|
Zhou, S.L., Liu, X.X., Lai, J.H., Zheng, M., Liu, W.Z., Xu, Q., Yin, D.L., 2019. Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol. Chem. Eng. J. 361, 571–577. doi: 10.1016/j.cej.2018.12.111
|