Volume 8 Issue 2
May  2023
Turn off MathJax
Article Contents
Zhangkang Li, Jamie LeBlanc, Hitendra Kumar, Hongguang Zhang, Weijun Yang, Xiao He, Qingye Lu, Jeffrey Van Humbeck, Keekyoung Kim, Jinguang Hu. Super-anti-freezing, tough and adhesive titanium carbide and L-ornithine-enhanced hydrogels[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 136-145. doi: 10.1016/j.jobab.2023.01.005
Citation: Zhangkang Li, Jamie LeBlanc, Hitendra Kumar, Hongguang Zhang, Weijun Yang, Xiao He, Qingye Lu, Jeffrey Van Humbeck, Keekyoung Kim, Jinguang Hu. Super-anti-freezing, tough and adhesive titanium carbide and L-ornithine-enhanced hydrogels[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 136-145. doi: 10.1016/j.jobab.2023.01.005

Super-anti-freezing, tough and adhesive titanium carbide and L-ornithine-enhanced hydrogels

doi: 10.1016/j.jobab.2023.01.005
More Information
  • Hydrogels are highly porous three-dimensional crosslinked polymer networks consisting of hydrophilic polymers, employed most practically in medicine and industry, often as biosensors. Simple hydrogels suffer limitations in their mechanical properties, such as tensile and compression, and freeze at sub-zero temperatures, which compromise their ability as useful biosensors. In this study, the incorporation of L-ornithine-based zwitterionic monomer (OZM), titanium carbide (MXene), and glycerol within polyacrylamide hydrogels was used to prepare a novel polyacrylamide/polyL-ornithine-based zwitterion/MXene (PAM/Porn/MXene) hydrogel to improve the mechanical, adhesion, and anti-freezing properties of pure polyacrylamide hydrogels. This study also analyzed the mechanical strength (tensile and compression), adhesion, and anti-freezing properties of a novel PAM/Porn/MXene hydrogel at 1%, 4%, and 10% MXene concentrations to establish to what extent the conductive MXene material enhanced these properties and concluded that the tensile and compressive properties improved linearly with the increase in the concentrations of MXene, adhesion decreased with the increased MXene concentrations, and synergistic interaction between MXene and OZM significantly improved the anti-freezing properties up to –80 ℃.


  • Declaration of Competing Interest  There are no conflicts to declare.
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.01.005.
    Supplementary materials
    1 These authors contributed equally to this work.
  • loading
  • Amjadi, M., Kyung, K.U., Park, I., Sitti, M., 2016. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698. doi: 10.1002/adfm.201504755
    Anasori, B., Lukatskaya, M.R., Gogotsi, Y., 2017. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098. doi: 10.1038/natrevmats.2016.98
    Bai, H.Y., Li, Z.K., Zhang, S.W., Wang, W., Dong, W.F., 2018. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 200, 468–476. doi: 10.1016/j.carbpol.2018.08.041
    Caló, E., Khutoryanskiy, V.V., 2015. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267. doi: 10.1016/j.eurpolymj.2014.11.024
    Deng, Z.X., Guo, Y., Zhao, X., Ma, P.X., Guo, B.L., 2018. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 30, 1729–1742. doi: 10.1021/acs.chemmater.8b00008
    Deng, Z.X., Hu, T.L., Lei, Q., He, J.K., Ma, P.X., Guo, B.L., 2019. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces 11, 6796–6808. doi: 10.1021/acsami.8b20178
    Deng, Z.X., Yu, R., Guo, B.L., 2021. Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front. 5, 2092–2123. doi: 10.1039/d0qm00868k
    Gogotsi, Y., Anasori, B., 2019. The rise of MXenes. ACS Nano 13, 8491–8494. doi: 10.1021/acsnano.9b06394
    Gombert, Y., Roncoroni, F., Sánchez-Ferrer, A., Spencer, N.D., 2020. The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: beyond the fishing net. Soft Matter 16, 9789–9798. doi: 10.1039/d0sm01536a
    He, Z.Y., Wu, C.Y., Hua, M.T., Wu, S.W., Wu, D., Zhu, X.Y., Wang, J.J., He, X.M., 2020. Bioinspired multifunctional anti-icing hydrogel. Matter 2, 723–734. doi: 10.1016/j.matt.2019.12.017
    Herrmann, A., Haag, R., Schedler, U., 2021. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 10, e2100062. doi: 10.1002/adhm.202100062
    Jain, P., Hung, H.C., Li, B.W., Ma, J.R., Dong, D.Y., Lin, X.J., Sinclair, A., Zhang, P., O'Kelly, M.B., Niu, L.Q., Jiang, S.Y., 2019. Zwitterionic hydrogels based on a degradable disulfide carboxybetaine cross-linker. Langmuir 35, 1864–1871. doi: 10.1021/acs.langmuir.8b02100
    Jian, Y.K., Wu, B.Y., Le, X.X., Liang, Y., Zhang, Y.C., Zhang, D.C., Zhang, L., Lu, W., Zhang, J.W., Chen, T., 2019. Antifreezing and stretchable organohydrogels as soft actuators. Research 2019, 2384347 (Wash D C).
    Kumar, H., Sakthivel, K., Mohamed, M.G.A., Boras, E., Shin, S.R., Kim, K., 2021. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol. Biosci. 21, 202000317.
    Kumar, J.A., Prakash, P., Krithiga, T., Amarnath, D.J., Premkumar, J., Rajamohan, N., Vasseghian, Y., Saravanan, P., Rajasimman, M., 2022. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere 286, 131607. doi: 10.1016/j.chemosphere.2021.131607
    Leigh, B.L., Cheng, E., Xu, L.J., Andresen, C., Hansen, M.R., Allan Guymon, C., 2017. Photopolymerizable zwitterionic polymer patterns control cell adhesion and guide neural growth. Biomacromolecules 18, 2389–2401. doi: 10.1021/acs.biomac.7b00579
    Li, Z.K., Bai, H.Y., Zhang, S.W., Wang, W., Ma, P.M., Dong, W.F., 2018. DN strategy constructed photo-crosslinked PVA/CNC/P(NIPPAm-co-AA) hydrogels with temperature-sensitive and pH-sensitive properties. New J. Chem. 42, 13453–13460. doi: 10.1039/C8NJ02132E
    Li, Z.K., Wang, D.W., Bai, H.Y., Zhang, S.W., Ma, P.M., Dong, W.F., 2020. Photo-crosslinking strategy constructs adhesive, superabsorbent, and tough PVA-based hydrogel through controlling the balance of cohesion and adhesion. Macromol. Mater. Eng. 305, 1900623. doi: 10.1002/mame.201900623
    Li, Z.K., Yu, C., Kumar, H., He, X., Lu, Q.Y., Bai, H.Y., Kim, K., Hu, J.G., 2022. The effect of crosslinking degree of hydrogels on hydrogel adhesion. Gels 8, 682. doi: 10.3390/gels8100682
    Liang, Y.P., He, J.H., Guo, B.L., 2021. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722. doi: 10.1021/acsnano.1c04206
    Liu, K.Q., Wei, S., Song, L.X., Liu, H.L., Wang, T.F., 2020. Conductive hydrogels-a novel material: recent advances and future perspectives. J. Agric. Food Chem. 68, 7269–7280. doi: 10.1021/acs.jafc.0c00642
    Liu, R., Cui, L., Wang, H.Z., Chen, Q.B., Guan, Y., Zhang, Y.J., 2021. Tough, resilient, adhesive, and anti-freezing hydrogels cross-linked with a macromolecular cross-linker for wearable strain sensors. ACS Appl. Mater. Interfaces 13, 42052–42062. doi: 10.1021/acsami.1c12687
    Miró, P., Audiffred, M., Heine, T., 2014. An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554. doi: 10.1039/C4CS00102H
    Noshadi, I., Walker, B.W., Portillo-Lara, R., Shirzaei Sani, E., Gomes, N., Aziziyan, M.R., Annabi, N., 2017. Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Sci. Rep. 7, 4345. doi: 10.1038/s41598-017-04280-w
    Pan, X.F., Wang, Q.H., Ning, D.W., Dai, L., Liu, K., Ni, Y.H., Chen, L.H., Huang, L.L., 2018. Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng. 4, 3397–3404. doi: 10.1021/acsbiomaterials.8b00657
    Peng, Z., Yu, H.R., Wen, J.Y., Wang, Y.L., Liang, T., Cheng, C.J., 2022. A novel ion-responsive photonic hydrogel sensor for portable visual detection and timely removal of lead ions in water. Mater. Adv. 3, 5393–5405. doi: 10.1039/d2ma00232a
    Qian, H.Y., Wang, J.K., Yan, L.F., 2020. Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal. J. Bioresour. Bioprod. 5, 204–210. doi: 10.1016/j.jobab.2020.07.006
    Sennakesavan, G., Mostakhdemin, M., Dkhar, L.K., Seyfoddin, A., Fatihhi, S.J., 2020. Acrylic acid/acrylamide based hydrogels and its properties - a review. Polym. Degrad. Stab. 180, 109308. doi: 10.1016/j.polymdegradstab.2020.109308
    Sharma, S., Tiwari, S., 2020. A review on biomacromolecular hydrogel classification and its applications. Int. J. Biol. Macromol. 162, 737–747. doi: 10.1016/j.ijbiomac.2020.06.110
    Song, J.C., Chen, S., Sun, L.J., Guo, Y.F., Zhang, L.Z., Wang, S.L., Xuan, H.X., Guan, Q.B., You, Z.W., 2020. Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 32, e1906994. doi: 10.1002/adma.201906994
    Sui, X.J., Guo, H.S., Chen, P.G., Zhu, Y.N., Wen, C.Y., Gao, Y.H., Yang, J., Zhang, X.Y., Zhang, L., 2020. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv. Funct. Mater. 30, 1907986. doi: 10.1002/adfm.201907986
    Sun, X.H., Agate, S., Salem, K.S., Lucia, L., Pal, L., 2021. Hydrogel-based sensor networks: compositions, properties, and applications: a review. ACS Appl. Bio Mater. 4, 140–162. doi: 10.1021/acsabm.0c01011
    Tan, H.W., Abdul Aziz, A.R., Aroua, M.K., 2013. Glycerol production and its applications as a raw material: a review. Renew. Sustain. Energy Rev. 27, 118–127. doi: 10.1016/j.rser.2013.06.035
    Wang, L.R., Xu, T.L., Zhang, X.J., 2021. Multifunctional conductive hydrogel-based flexible wearable sensors. Trac Trends Anal. Chem. 134, 116130. doi: 10.1016/j.trac.2020.116130
    Wu, M., Chen, J.S., Ma, Y.H., Yan, B., Pan, M.F., Peng, Q.Y., Wang, W.D., Han, L.B., Liu, J.F., Zeng, H.B., 2020. Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. J. Mater. Chem. A 8, 24718–24733. doi: 10.1039/d0ta09735g
    Wu, Z.T., Liu, X.C., Shang, T.X., Deng, Y.Q., Wang, N., Dong, X.M., Zhao, J., Chen, D.R., Tao, Y., Yang, Q.H., 2021. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater. 2021, 2102874. doi: 10.1002/adfm.202102874
    Ye, Y.H., Zhang, Y.F., Chen, Y., Han, X.S., Jiang, F., 2020. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430. doi: 10.1002/adfm.202003430
    Zhai, Y.J., Yang, W.Y., Xie, X.B., Sun, X.Q., Wang, J., Yang, X.Y., Naik, N., Kimura, H., Du, W., Guo, Z.H., Hou, C.X., 2022. Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg. Chem. Front. 9, 1115–1124. doi: 10.1039/d1qi01260f
    Zhang, J.W., Zhang, Q., Liu, X., Xia, S., Gao, Y., Gao, G.H., 2022a. Flexible and wearable strain sensors based on conductive hydrogels. J. Polym. Sci. 60, 2663–2678. doi: 10.1002/pol.20210935
    Zhang, W., Wang, R.X., Sun, Z.M., Zhu, X.W., Zhao, Q., Zhang, T.F., Cholewinski, A., Yang, F., Zhao, B.X., Pinnaratip, R., Forooshani, P.K., Lee, B.P., 2020a. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49, 433–464. doi: 10.1039/c9cs00285e
    Zhang, X.J., Wang, K., Hu, J.Y., Zhang, Y.C., Dai, Y., Xia, F., 2020b. Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J. Mater. Chem. A 8, 25390–25401. doi: 10.1039/d0ta09315g
    Zhang, Y.F., Tian, X.Y., Zhang, Q.Y., Xie, H.F., Wang, B.Y., Feng, Y.F., 2022b. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. J. Bioresour. Bioprod. 7, 116–127. doi: 10.1016/j.jobab.2022.03.003
    Zhang, Y.Z., El-Demellawi, J.K., Jiang, Q., Ge, G., Liang, H.F., Lee, K., Dong, X.C., Alshareef, H.N., 2020c. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49, 7229–7251. doi: 10.1039/d0cs00022a
    Zheng, S.Y., Mao, S.H., Yuan, J.F., Wang, S.B., He, X.M., Zhang, X.N., Du, C., Zhang, D., Wu, Z.L., Yang, J.T., 2021. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications. Chem. Mater. 33, 8418–8429. doi: 10.1021/acs.chemmater.1c02781
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (72) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint