Citation: | Zhangkang Li, Jamie LeBlanc, Hitendra Kumar, Hongguang Zhang, Weijun Yang, Xiao He, Qingye Lu, Jeffrey Van Humbeck, Keekyoung Kim, Jinguang Hu. Super-anti-freezing, tough and adhesive titanium carbide and L-ornithine-enhanced hydrogels[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 136-145. doi: 10.1016/j.jobab.2023.01.005 |
Amjadi, M., Kyung, K.U., Park, I., Sitti, M., 2016. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698. doi: 10.1002/adfm.201504755
|
Anasori, B., Lukatskaya, M.R., Gogotsi, Y., 2017. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098. doi: 10.1038/natrevmats.2016.98
|
Bai, H.Y., Li, Z.K., Zhang, S.W., Wang, W., Dong, W.F., 2018. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr. Polym. 200, 468–476. doi: 10.1016/j.carbpol.2018.08.041
|
Caló, E., Khutoryanskiy, V.V., 2015. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267. doi: 10.1016/j.eurpolymj.2014.11.024
|
Deng, Z.X., Guo, Y., Zhao, X., Ma, P.X., Guo, B.L., 2018. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 30, 1729–1742. doi: 10.1021/acs.chemmater.8b00008
|
Deng, Z.X., Hu, T.L., Lei, Q., He, J.K., Ma, P.X., Guo, B.L., 2019. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces 11, 6796–6808. doi: 10.1021/acsami.8b20178
|
Deng, Z.X., Yu, R., Guo, B.L., 2021. Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front. 5, 2092–2123. doi: 10.1039/d0qm00868k
|
Gogotsi, Y., Anasori, B., 2019. The rise of MXenes. ACS Nano 13, 8491–8494. doi: 10.1021/acsnano.9b06394
|
Gombert, Y., Roncoroni, F., Sánchez-Ferrer, A., Spencer, N.D., 2020. The hierarchical bulk molecular structure of poly(acrylamide) hydrogels: beyond the fishing net. Soft Matter 16, 9789–9798. doi: 10.1039/d0sm01536a
|
He, Z.Y., Wu, C.Y., Hua, M.T., Wu, S.W., Wu, D., Zhu, X.Y., Wang, J.J., He, X.M., 2020. Bioinspired multifunctional anti-icing hydrogel. Matter 2, 723–734. doi: 10.1016/j.matt.2019.12.017
|
Herrmann, A., Haag, R., Schedler, U., 2021. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 10, e2100062. doi: 10.1002/adhm.202100062
|
Jain, P., Hung, H.C., Li, B.W., Ma, J.R., Dong, D.Y., Lin, X.J., Sinclair, A., Zhang, P., O'Kelly, M.B., Niu, L.Q., Jiang, S.Y., 2019. Zwitterionic hydrogels based on a degradable disulfide carboxybetaine cross-linker. Langmuir 35, 1864–1871. doi: 10.1021/acs.langmuir.8b02100
|
Jian, Y.K., Wu, B.Y., Le, X.X., Liang, Y., Zhang, Y.C., Zhang, D.C., Zhang, L., Lu, W., Zhang, J.W., Chen, T., 2019. Antifreezing and stretchable organohydrogels as soft actuators. Research 2019, 2384347 (Wash D C).
|
Kumar, H., Sakthivel, K., Mohamed, M.G.A., Boras, E., Shin, S.R., Kim, K., 2021. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol. Biosci. 21, 202000317.
|
Kumar, J.A., Prakash, P., Krithiga, T., Amarnath, D.J., Premkumar, J., Rajamohan, N., Vasseghian, Y., Saravanan, P., Rajasimman, M., 2022. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere 286, 131607. doi: 10.1016/j.chemosphere.2021.131607
|
Leigh, B.L., Cheng, E., Xu, L.J., Andresen, C., Hansen, M.R., Allan Guymon, C., 2017. Photopolymerizable zwitterionic polymer patterns control cell adhesion and guide neural growth. Biomacromolecules 18, 2389–2401. doi: 10.1021/acs.biomac.7b00579
|
Li, Z.K., Bai, H.Y., Zhang, S.W., Wang, W., Ma, P.M., Dong, W.F., 2018. DN strategy constructed photo-crosslinked PVA/CNC/P(NIPPAm-co-AA) hydrogels with temperature-sensitive and pH-sensitive properties. New J. Chem. 42, 13453–13460. doi: 10.1039/C8NJ02132E
|
Li, Z.K., Wang, D.W., Bai, H.Y., Zhang, S.W., Ma, P.M., Dong, W.F., 2020. Photo-crosslinking strategy constructs adhesive, superabsorbent, and tough PVA-based hydrogel through controlling the balance of cohesion and adhesion. Macromol. Mater. Eng. 305, 1900623. doi: 10.1002/mame.201900623
|
Li, Z.K., Yu, C., Kumar, H., He, X., Lu, Q.Y., Bai, H.Y., Kim, K., Hu, J.G., 2022. The effect of crosslinking degree of hydrogels on hydrogel adhesion. Gels 8, 682. doi: 10.3390/gels8100682
|
Liang, Y.P., He, J.H., Guo, B.L., 2021. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722. doi: 10.1021/acsnano.1c04206
|
Liu, K.Q., Wei, S., Song, L.X., Liu, H.L., Wang, T.F., 2020. Conductive hydrogels-a novel material: recent advances and future perspectives. J. Agric. Food Chem. 68, 7269–7280. doi: 10.1021/acs.jafc.0c00642
|
Liu, R., Cui, L., Wang, H.Z., Chen, Q.B., Guan, Y., Zhang, Y.J., 2021. Tough, resilient, adhesive, and anti-freezing hydrogels cross-linked with a macromolecular cross-linker for wearable strain sensors. ACS Appl. Mater. Interfaces 13, 42052–42062. doi: 10.1021/acsami.1c12687
|
Miró, P., Audiffred, M., Heine, T., 2014. An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554. doi: 10.1039/C4CS00102H
|
Noshadi, I., Walker, B.W., Portillo-Lara, R., Shirzaei Sani, E., Gomes, N., Aziziyan, M.R., Annabi, N., 2017. Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Sci. Rep. 7, 4345. doi: 10.1038/s41598-017-04280-w
|
Pan, X.F., Wang, Q.H., Ning, D.W., Dai, L., Liu, K., Ni, Y.H., Chen, L.H., Huang, L.L., 2018. Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng. 4, 3397–3404. doi: 10.1021/acsbiomaterials.8b00657
|
Peng, Z., Yu, H.R., Wen, J.Y., Wang, Y.L., Liang, T., Cheng, C.J., 2022. A novel ion-responsive photonic hydrogel sensor for portable visual detection and timely removal of lead ions in water. Mater. Adv. 3, 5393–5405. doi: 10.1039/d2ma00232a
|
Qian, H.Y., Wang, J.K., Yan, L.F., 2020. Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal. J. Bioresour. Bioprod. 5, 204–210. doi: 10.1016/j.jobab.2020.07.006
|
Sennakesavan, G., Mostakhdemin, M., Dkhar, L.K., Seyfoddin, A., Fatihhi, S.J., 2020. Acrylic acid/acrylamide based hydrogels and its properties - a review. Polym. Degrad. Stab. 180, 109308. doi: 10.1016/j.polymdegradstab.2020.109308
|
Sharma, S., Tiwari, S., 2020. A review on biomacromolecular hydrogel classification and its applications. Int. J. Biol. Macromol. 162, 737–747. doi: 10.1016/j.ijbiomac.2020.06.110
|
Song, J.C., Chen, S., Sun, L.J., Guo, Y.F., Zhang, L.Z., Wang, S.L., Xuan, H.X., Guan, Q.B., You, Z.W., 2020. Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 32, e1906994. doi: 10.1002/adma.201906994
|
Sui, X.J., Guo, H.S., Chen, P.G., Zhu, Y.N., Wen, C.Y., Gao, Y.H., Yang, J., Zhang, X.Y., Zhang, L., 2020. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv. Funct. Mater. 30, 1907986. doi: 10.1002/adfm.201907986
|
Sun, X.H., Agate, S., Salem, K.S., Lucia, L., Pal, L., 2021. Hydrogel-based sensor networks: compositions, properties, and applications: a review. ACS Appl. Bio Mater. 4, 140–162. doi: 10.1021/acsabm.0c01011
|
Tan, H.W., Abdul Aziz, A.R., Aroua, M.K., 2013. Glycerol production and its applications as a raw material: a review. Renew. Sustain. Energy Rev. 27, 118–127. doi: 10.1016/j.rser.2013.06.035
|
Wang, L.R., Xu, T.L., Zhang, X.J., 2021. Multifunctional conductive hydrogel-based flexible wearable sensors. Trac Trends Anal. Chem. 134, 116130. doi: 10.1016/j.trac.2020.116130
|
Wu, M., Chen, J.S., Ma, Y.H., Yan, B., Pan, M.F., Peng, Q.Y., Wang, W.D., Han, L.B., Liu, J.F., Zeng, H.B., 2020. Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. J. Mater. Chem. A 8, 24718–24733. doi: 10.1039/d0ta09735g
|
Wu, Z.T., Liu, X.C., Shang, T.X., Deng, Y.Q., Wang, N., Dong, X.M., Zhao, J., Chen, D.R., Tao, Y., Yang, Q.H., 2021. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater. 2021, 2102874. doi: 10.1002/adfm.202102874
|
Ye, Y.H., Zhang, Y.F., Chen, Y., Han, X.S., Jiang, F., 2020. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30, 2003430. doi: 10.1002/adfm.202003430
|
Zhai, Y.J., Yang, W.Y., Xie, X.B., Sun, X.Q., Wang, J., Yang, X.Y., Naik, N., Kimura, H., Du, W., Guo, Z.H., Hou, C.X., 2022. Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg. Chem. Front. 9, 1115–1124. doi: 10.1039/d1qi01260f
|
Zhang, J.W., Zhang, Q., Liu, X., Xia, S., Gao, Y., Gao, G.H., 2022a. Flexible and wearable strain sensors based on conductive hydrogels. J. Polym. Sci. 60, 2663–2678. doi: 10.1002/pol.20210935
|
Zhang, W., Wang, R.X., Sun, Z.M., Zhu, X.W., Zhao, Q., Zhang, T.F., Cholewinski, A., Yang, F., Zhao, B.X., Pinnaratip, R., Forooshani, P.K., Lee, B.P., 2020a. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49, 433–464. doi: 10.1039/c9cs00285e
|
Zhang, X.J., Wang, K., Hu, J.Y., Zhang, Y.C., Dai, Y., Xia, F., 2020b. Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J. Mater. Chem. A 8, 25390–25401. doi: 10.1039/d0ta09315g
|
Zhang, Y.F., Tian, X.Y., Zhang, Q.Y., Xie, H.F., Wang, B.Y., Feng, Y.F., 2022b. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. J. Bioresour. Bioprod. 7, 116–127. doi: 10.1016/j.jobab.2022.03.003
|
Zhang, Y.Z., El-Demellawi, J.K., Jiang, Q., Ge, G., Liang, H.F., Lee, K., Dong, X.C., Alshareef, H.N., 2020c. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49, 7229–7251. doi: 10.1039/d0cs00022a
|
Zheng, S.Y., Mao, S.H., Yuan, J.F., Wang, S.B., He, X.M., Zhang, X.N., Du, C., Zhang, D., Wu, Z.L., Yang, J.T., 2021. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications. Chem. Mater. 33, 8418–8429. doi: 10.1021/acs.chemmater.1c02781
|