Citation: | Akansha Shrivastava, Mamta Pal, Rakesh Kumar Sharma. Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 108-124. doi: 10.1016/j.jobab.2023.01.007 |
Ali Al-Maqtari, Q., Rehman, A., Ali Mahdi, A., Al-Ansi, W., Wei, M.P., Zhou, Y.Y., Phyo, H.M., Galeboe, O., Yao, W.R., 2022. Application of essential oils as preservatives in food systems: challenges and future prospectives - a review. Phytochem. Rev. 21, 1209–1246. doi: 10.1007/s11101-021-09776-y
|
Anfang, N., Brajkovich, M., Goddard, M.R., 2009. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 15, 1–8. doi: 10.1111/j.1755-0238.2008.00031.x
|
Baghban, R., Farajnia, S., Rajabibazl, M., Ghasemi, Y., Mafi, A., Hoseinpoor, R., Rahbarnia, L., Aria, M., 2019. Yeast expression systems: overview and recent advances. Mol. Biotechnol. 61, 365–384. doi: 10.1007/s12033-019-00164-8
|
Bardhan, P., Gupta, K., Mandal, M., 2019. Chapter 15 - Microbes as bio-resource for sustainable production of biofuels and other bioenergy products. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam, pp. 205–222.
|
Benito, Á., Calderón, F., Benito, S., 2017. The combined use of Schizosaccharomyces pombe and Lachancea thermotolerans-effect on the anthocyanin wine composition. Molecules 22, 739. doi: 10.3390/molecules22050739
|
Benito, S., 2019. The impacts of Schizosaccharomyces on winemaking. Appl. Microbiol. Biotechnol. 103, 4291–4312. doi: 10.1007/s00253-019-09827-7
|
Benito, S., Palomero, F., Morata, A., Calderón, F., Suárez-Lepe, J.A., 2009. A method for estimating Dekkera/Brettanomyces populations in wines. J. Appl. Microbiol. 106, 1743–1751. doi: 10.1111/j.1365-2672.2008.04137.x
|
Byrne, B., 2015. Pichia pastoris as an expression host for membrane protein structural biology. Curr. Opin. Struct. Biol. 32, 9–17. doi: 10.1016/j.sbi.2015.01.005
|
Caballero-Pérez, A., Viader-Salvadó, J.M., Herrera-Estala, A.L., Fuentes-Garibay, J.A., Guerrero-Olazarán, M., 2021. Buried Kex2 sites in glargine precursor aggregates prevent its intracellular processing in Pichia pastoris muts strains and the effect of methanol-feeding strategy and induction temperature on glargine precursor production parameters. Appl. Biochem. Biotechnol. 193, 2806–2829. doi: 10.1007/s12010-021-03567-z
|
Cai, P., Duan, X.P., Wu, X.Y., Gao, L.H., Ye, M., Zhou, Y.J., 2021. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Res. 49, 7791–7805. doi: 10.1093/nar/gkab535
|
Cai, P., Wu, X.Y., Deng, J., Gao, L.H., Shen, Y.W., Yao, L., Zhou, Y.J., 2022. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc. Natl. Acad. Sci. USA 119, e2201711119. doi: 10.1073/pnas.2201711119
|
Caspeta, L., Shoaie, S., Agren, R., Nookaew, I., Nielsen, J., 2012. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst. Biol. 6, 24. doi: 10.1186/1752-0509-6-24
|
Chen, M.Q., Zeng, X., Zhu, Q.J., Wang, D.G., Han, S.Y., Liang, S.L., Lin, Y., 2021. Effective synthesis of Rebaudioside A by whole-cell biocatalyst Pichia pastoris. Biochem. Eng. J. 175, 108117. doi: 10.1016/j.bej.2021.108117
|
Chen, R.B., Yang, S., Zhang, L., Zhou, Y.J., 2020. Advanced strategies for production of natural products in yeast. iScience 23, 100879. doi: 10.1016/j.isci.2020.100879
|
Chen, S.C., Tong, Q.P., Guo, X.L., Cong, H., Zhao, Z., Liang, W.F., Li, J.M., Zhu, P., Yang, H., 2022a. Complete secretion of recombinant Bacillus subtilis levansucrase in Pichia pastoris for production of high molecular weight levan. Int. J. Biol. Macromol. 214, 203–211. doi: 10.1016/j.ijbiomac.2022.06.092
|
Chen, Y., Li, F.R., Nielsen, J., 2022b. Genome-scale modeling of yeast metabolism: retrospectives and perspectives. FEMS Yeast Res. 22, foac003. doi: 10.1093/femsyr/foac003
|
Cheng, W.J., Cheng, C., Gong, L.P., Ding, J., Shi, Z.P., 2020. Re-circulative utilization of waste Pichia pastoris as efficient nitrogen source for enhancing butyric acid production. Biochem. Eng. J. 161, 107661. doi: 10.1016/j.bej.2020.107661
|
Chrzanowski, G., 2020. Saccharomyces cerevisiae: an interesting producer of bioactive plant polyphenolic metabolites. Int. J. Mol. Sci. 21, 7343. doi: 10.3390/ijms21197343
|
da Silva Vale, A., de Melo Pereira, G.V., de Carvalho Neto, D.P., Rodrigues, C., Pagnoncelli, M.G.B., Soccol, C.R., 2019. Effect of Co-inoculation with Pichia fermentans and Pediococcus acidilactici on metabolite produced during fermentation and volatile composition of coffee beans. Fermentation 5, 67. doi: 10.3390/fermentation5030067
|
da Silva, R.R., da Conceição, P.J.P., de Menezes, C.L.A., de Oliveira Nascimento, C.E., Machado Bertelli, M., Pessoa Júnior, A., de Souza, G.M., da Silva, R., Gomes, E., 2019. Biochemical characteristics and potential application of a novel ethanol and glucose-tolerant -glucosidase secreted by Pichia guilliermondii G1.2. J. Biotech-nol. 294, 73–80. doi: 10.1016/j.jbiotec.2019.02.001
|
Das, M., Patra, P., Ghosh, A., 2020. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renew. Sustain. Energy Rev. 119, 109562. doi: 10.1016/j.rser.2019.109562
|
Dasgupta, D., Sidana, A., Sarkar, B., More, S., Ghosh, D., Bhaskar, T., Ray, A., 2022. Process development for crystalline xylitol production from corncob biomass by Pichia caribbica. Food Bioprod. Process. 133, 45–56. doi: 10.1016/j.fbp.2022.02.006
|
Ding, J., Xu, M., Xie, F., Chen, C., Shi, Z.P., 2019. Efficient butanol production using corn-starch and waste Pichia pastoris semi-solid mixture as the substrate. Biochem. Eng. J. 143, 41–47. doi: 10.1117/12.2504853
|
Gao, J.C., Jiang, L.H., Lian, J.Z., 2021. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth. Syst. Biotechnol. 6, 110–119. doi: 10.1016/j.synbio.2021.04.005
|
Gao, L.M., Cai, M.H., Shen, W., Xiao, S.W., Zhou, X.S., Zhang, Y.X., 2013. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production. Microb. Cell Fact. 12, 77. doi: 10.1186/1475-2859-12-77
|
Geier, M., Fauland, P., Vogl, T., Glieder, A., 2015. Compact multi-enzyme pathways in P. pastoris. Chem. Commun. 51, 1643–1646. doi: 10.1039/C4CC08502G
|
Giri, R., Sharma, R.K., 2020. Fungal pretreatment of lignocellulosic biomass for the production of plant hormone by Pichia fermentans under submerged conditions. Bioresour. Bioprocess. 7, 1–11. doi: 10.22146/gamajts.v2i1.56843
|
Guo, F., Dai, Z.X., Peng, W.F., Zhang, S.J., Zhou, J., Ma, J.F., Dong, W.L., Xin, F.X., Zhang, W.M., Jiang, M., 2021. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol. Bioeng. 118, 357–371. doi: 10.1002/bit.27575
|
Hammer, S.K., Avalos, J.L., 2017. Harnessing yeast organelles for metabolic engineering. Nat. Chem. Biol. 13, 823–832. doi: 10.1038/nchembio.2429
|
Harvey, A.L., Edrada-Ebel, R., Quinn, R.J., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. doi: 10.1038/nrd4510
|
Hesham, A.E.L., Mostafa, Y.S., AlSharqi, L.E.O., 2020. Optimization of citric acid production by immobilized cells of novel yeast isolates. Mycobiology 48, 122–132. doi: 10.1080/12298093.2020.1726854
|
Huang, C.J., Lee, S.L., Chou, C.C., 2001. Production of 2-phenylethanol, a flavor ingredient, by Pichia fermentans L-5 under various culture conditions. Food Res. Int. 34, 277–282. doi: 10.1016/S0963-9969(00)00164-2
|
Irzykowska, L., Waśkiewicz, A., 2014. Hansenula: biology and applications. Encyclopedia of Food Microbiology, 2nd ed.. Elsevier, Amsterdam, pp. 121–124.
|
Jensen, E.D., Ambri, F., Bendtsen, M.B., Javanpour, A.A., Liu, C.C., Jensen, M.K., Keasling, J.D., 2021. Integrating continuous hypermutation with high-throughput screening for optimization of cis, cis-muconic acid production in yeast. Microb. Biotechnol. 14, 2617–2626. doi: 10.1111/1751-7915.13774
|
Ji, H., Xu, K., Dong, X.M., Sun, D., Jin, L.B., 2021. Sequential production of ᴅ-xylonate and ethanol from non-detoxified corncob at low-pH by Pichia kudriavzevii via a two-stage fermentation strategy. J. Fungi 7, 1038. doi: 10.3390/jof7121038
|
Jolly, N.P., Varela, C., Pretorius, I.S., 2014. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 215–237. doi: 10.1111/1567-1364.12111
|
Joshi, S., Mishra, S., 2022. Recent advances in biofuel production through metabolic engineering. Bioresour. Technol. 352, 127037. doi: 10.1016/j.biortech.2022.127037
|
Jung, H.S., Chory, J., 2010. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol. 152, 453–459. doi: 10.1104/pp.109.149070
|
Krivoruchko, A., Nielsen, J., 2015. Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr. Opin. Biotechnol. 35, 7–15. doi: 10.1016/j.copbio.2014.12.004
|
Kumokita, R., Bamba, T., Inokuma, K., Yoshida, T., Ito, Y., Kondo, A., Hasunuma, T., 2022. Construction of an l-tyrosine chassis in Pichia pastoris enhances aromatic secondary metabolite production from glycerol. ACS Synth. Biol. 11, 2098–2107. doi: 10.1021/acssynbio.2c00047
|
Kurtzman, C.P., 1998. 42 - Pichia E.C. Hansen emend. Kurtzman. The Yeasts, 4th ed.. Elsevier, Amsterdam, pp. 273–352.
|
Kut, A., Demiray, E., Ertuğrul Karatay, S., Dönmez, G., 2022. Second generation bioethanol production from hemicellulolytic hydrolyzate of apple pomace by Pichia stipitis. Energy Sources A Recovery Util. Environ. Eff. 44, 5574–5585. doi: 10.1080/15567036.2020.1838000
|
Lekshmi Sundar, M.S., Madhavan Nampoothiri, K., 2022. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid. Bioresour. Technol. 345, 126548. doi: 10.1016/j.biortech.2021.126548
|
Li, Z.H., Wang, X.N., Zhang, H.R., 2019. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab. Eng. 54, 1–11. doi: 10.1016/j.ymben.2019.03.002
|
Lian, J.Z., Si, T., Nair, N.U., Zhao, H.M., 2014. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab. Eng. 24, 139–149. doi: 10.1016/j.ymben.2014.05.010
|
Liu, W.C., Gong, T., Wang, Q.H., Liang, X., Chen, J.J., Zhu, P., 2016. Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci. Rep. 6, 18439. doi: 10.1038/srep18439
|
Liu, Z.H., Moradi, H., Shi, S.B., Darvishi, F., 2021. Yeasts as microbial cell factories for sustainable production of biofuels. Renew. Sustain. Energy Rev. 143, 110907. doi: 10.1016/j.rser.2021.110907
|
Löbs, A.K., Schwartz, C., Wheeldon, I., 2017. Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Synth. Syst. Biotechnol. 2, 198–207. doi: 10.1016/j.synbio.2017.08.002
|
Luo, Y., Liu, L.L., Yuan, L., Li, J.K., Wang, X.Y., 2022. The characteristics of patulin degradation by probiotic yeast - Pichia guilliermondii S15-8. Food Control 133, 108627. doi: 10.1016/j.foodcont.2021.108627
|
Luo, Y.Z., Li, B.Z., Liu, D., Zhang, L., Chen, Y., Jia, B., Zeng, B.X., Zhao, H.M., Yuan, Y.J., 2015. Engineered biosynthesis of natural products in heterologous hosts. Chem. Soc. Rev. 44, 5265–5290. doi: 10.1039/C5CS00025D
|
Ma, J.B., Gu, Y., Marsafari, M., Xu, P., 2020. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J. Ind. Microbiol. Biotechnol. 47, 845–862. doi: 10.1007/s10295-020-02290-8
|
Maccani, A., Landes, N., Stadlmayr, G., Maresch, D., Leitner, C., Maurer, M., Gasser, B., Ernst, W., Kunert, R., Mattanovich, D., 2014. Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Biotechnol. J. 9, 526–537. doi: 10.1002/biot.201300305
|
Madhavan, A., Arun, K.B., Sindhu, R., Krishnamoorthy, J., Reshmy, R., Sirohi, R., Pugazhendi, A., Awasthi, M.K., Szakacs, G., Binod, P., 2021. Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb. Cell Fact. 20, 124. doi: 10.1186/s12934-021-01617-z
|
Mahesh, S.K., Fathima, J., Veena, V.G., 2019. Cosmetic potential of natural products: industrial applications. Natural Bio-Active Compounds. Springer Singapore, Singapore, pp. 215–250.
|
Martins, L.C., Monteiro, C.C., Semedo, P.M., Sá-Correia, I., 2020. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl. Microbiol. Biotechnol. 104, 6527–6547. doi: 10.1007/s00253-020-10697-7
|
Martins-Santana, L., Nora, L.C., Sanches-Medeiros, A., Lovate, G.L., Cassiano, M.H.A., Silva-Rocha, R., 2018. Systems and synthetic biology approaches to engineer fungi for fine chemical production. Front. Bioeng. Biotechnol. 6, 117. doi: 10.3389/fbioe.2018.00117
|
Maserti, B., Podda, A., Giorgetti, L., Del Carratore, R., Chevret, D., Migheli, Q., 2015. Proteome changes during yeast-like and pseudohyphal growth in the biofilm– forming yeast Pichia fermentans. Amino Acids 47, 1091–1106. doi: 10.1007/s00726-015-1933-1
|
Mateo, J., Maicas, S., 2016. Application of non-Saccharomyces yeasts to wine-making process. Fermentation 2, 14. doi: 10.3390/fermentation2030014
|
Miao, L.T., Li, Y., Zhu, T.C., 2021. Metabolic engineering of methylotrophic Pichia pastoris for the production of β-alanine. Bioresour. Bioprocess. 8, 1–11. doi: 10.1155/2021/8896715
|
Middelbeek, E.J., Stumm, C., Vogels, G.D., 1980. Effects of Pichia kluyveri killer toxin on sensitive cells. Antonie Van Leeuwenhoek 46, 205–220. doi: 10.1007/BF00444075
|
Nakagawa, A., Matsumura, E., Koyanagi, T., Katayama, T., Kawano, N., Yoshimatsu, K., Yamamoto, K., Kumagai, H., Sato, F., Minami, H., 2016. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7, 10390. doi: 10.1038/ncomms10390
|
Narisetty, V., Castro, E., Durgapal, S., Coulon, F., Jacob, S., Kumar, D., Kumar Awasthi, M., Kishore Pant, K., Parameswaran, B., Kumar, V., 2021. High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresour. Technol. 342, 126005. doi: 10.1016/j.biortech.2021.126005
|
Naseri, G., Koffas, M.A.G., 2020. Application of combinatorial optimization strategies in synthetic biology. Nat. Commun. 11, 2446. doi: 10.1038/s41467-020-16175-y
|
Nayak, R., Chakraborty, R., Hasija, Y., 2021. Chapter 13 - system biology and synthetic biology. Translational Biotechnology. Elsevier, Amsterdam, pp. 329–344.
|
Nielsen, J., 2014. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. mBio 5, e02153.
|
Nowrouzi, B., Rios-Solis, L., 2022. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit. Rev. Biotechnol. 42, 1213–1237. doi: 10.1080/07388551.2021.1990210
|
Obst, U., Lu, T.K., Sieber, V., 2017. A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth. Biol. 6, 1016–1025. doi: 10.1021/acssynbio.6b00337
|
Pal, M., Shrivastava, A., Sharma, R.K., 2023. Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell. Biomass Bioenergy 168, 106682. doi: 10.1016/j.biombioe.2022.106682
|
Palmerín-Carreño, D., Martínez-Alarcón, D., Dena-Beltrán, J.L., Vega-Rojas, L.J., Blanco-Labra, A., Escobedo-Reyes, A., García-Gasca, T., 2021. Optimization of a recombinant lectin production in Pichia pastoris using crude glycerol in a fed-batch system. Processes 9, 876. doi: 10.3390/pr9050876
|
Papagianni, M., 2017. 3 - Microbial bioprocesses. Current Developments in Biotechnology and Bioengineering. Elsevier, Amsterdam, pp. 45–72.
|
Paredes-Ortíz, A., Olvera-Martínez, T.G., Páez-Lerma, J.B., Rojas-Contreras, J.A., Moreno-Jiménez, M.R., Aguilar, C., Soto-Cruz, N.O., 2022. Isoamyl acetate production during continuous culture of Pichia fermentans. Rev. Mex. Ing. Quím. 21, 1–15. doi: 10.24275/rmiq/bio2654
|
Pareek, V., Sha, Z., He, J.X., Wingreen, N.S., Benkovic, S.J., 2021. Metabolic channeling: predictions, deductions, and evidence. Mol. Cell 81, 3775–3785. doi: 10.1016/j.molcel.2021.08.030
|
Patra, P., Das, M., Kundu, P., Ghosh, A., 2021. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol. Adv. 47, 107695. doi: 10.1016/j.biotechadv.2021.107695
|
Petruzzi, L., Capozzi, V., Berbegal, C., Corbo, M.R., Bevilacqua, A., Spano, G., Sinigaglia, M., 2017. Microbial resources and enological significance: opportunities and benefits. Front. Microbiol. 8, 995. doi: 10.3389/fmicb.2017.00995
|
Prabhu, A.A., Bosakornranut, E., Amraoui, Y., Agrawal, D., Coulon, F., Vivekanand, V., Thakur, V.K., Kumar, V., 2020. Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. Biotechnol. Biofuels 13, 209. doi: 10.1186/s13068-020-01845-2
|
Prielhofer, R., Barrero, J.J., Steuer, S., Gassler, T., Zahrl, R., Baumann, K., Sauer, M., Mattanovich, D., Gasser, B., Marx, H., 2017. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst. Biol. 11, 123. doi: 10.1186/s12918-017-0492-3
|
Puig-Pujol, A., Ferrando, N., Capdevila, F., Ocete, R., Revilla, E., 2016. Yeast biodiversity from Vitis vinifera L., subsp. sylvestris (Gmelin) Hegi to face up the oenological consequences of climate change. In: Proceedings of the BIO Web of Conference, 7, p. 02026.
|
Puxbaum, V., Mattanovich, D., Gasser, B., 2015. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl. Microbiol. Biotechnol. 99, 2925–2938. doi: 10.1007/s00253-015-6470-z
|
Raheja, Y., Sharma, G., Chadha, B.S., Basotra, N., 2022. Chapter 19 - synthetic biology and the regulatory roadmap for the commercialization of designer microbes. Current Developments in Biotechnology and Bioengineering. Elsevier, Amsterdam, pp. 449–475.
|
Rangel, A.E.T., Gómez Ramírez, J.M., González Barrios, A.F., 2020. From industrial by-products to value-added compounds: the design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses. Biofuels, Bioprod. Bioref. 14, 1228–1238. doi: 10.1002/bbb.2127
|
Rentería-Martínez, O., Páez-Lerma, J.B., Rojas-Contreras, J.A., López-Miranda, J., Martell-Nevárez, M.A., Soto-Cruz, N.O., 2021. Enhancing isoamyl acetate biosynthesis by Pichia fermentans. Rev. Mex. Ing. Quím. 20, 621–633. doi: 10.24275/rmiq/bio2125
|
Rosenbergová, Z., Kántorová, K., Šimkovič, M., Breier, A., Rebroš, M., 2021. Optimisation of recombinant myrosinase production in Pichia pastoris. Int. J. Mol. Sci. 22, 3677. doi: 10.3390/ijms22073677
|
Sánchez, B.J., Nielsen, J., 2015. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr. Biol. 7, 846–858. doi: 10.1039/C5IB00083A
|
Sánchez-Castañeda, A.K., Athès, V., Moussa, M., López-Miranda, J., Páez-Lerma, J.B., Soto-Cruz, N. Ó., Trelea, I.C., 2018. Modeling of isoamyl acetate production by fermentation with Pichia fermentans in an aerated system coupled to in situ extraction. Process. Biochem. 65, 11–20. doi: 10.1016/j.procbio.2017.10.010
|
Sanna, M.L., Zara, S., Zara, G., Migheli, Q., Budroni, M., Mannazzu, I., 2012. Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biol 116, 769–777. doi: 10.1016/j.funbio.2012.04.008
|
Semkiv, M., Sibirny, A., 2019. Yeasts for bioconversion of crude glycerol to high-value chemicals. Non-Conventional Yeasts: From Basic Research to Application. Springer International Publishing, Cham, pp. 389–451.
|
Shrivastava, A., Pal, M., Sharma, R.K., 2022. Simultaneous production of bioethanol and bioelectricity in a membrane-less single-chambered yeast fuel cell by Saccharomyces cerevisiae and Pichia fermentans. Arab. J. Sci. Eng. 47, 6763–6771. doi: 10.1007/s13369-021-06248-5
|
Shrivastava, A., Sharma, R.K., 2022a. Evaluation of co-culture system to produce ethanol and electricity from wheat straw hydrolysate using Saccharomyces cerevisiae and Pichia fermentans. Biomass Conv. Bioref. 1–10.
|
Shrivastava, A., Sharma, R.K., 2022b. Lignocellulosic biomass based microbial fuel cells: performance and applications. J. Clean. Prod. 361, 132269. doi: 10.1016/j.jclepro.2022.132269
|
Siripong, W., Angela, C., Tanapongpipat, S., Runguphan, W., 2020. Metabolic engineering of Pichia pastoris for production of isopentanol (3-methyl-1-butanol). Enzyme Microb. Technol. 138, 109557. doi: 10.1016/j.enzmictec.2020.109557
|
Siripong, W., Wolf, P., Kusumoputri, T.P., Downes, J.J., Kocharin, K., Tanapongpipat, S., Runguphan, W., 2018. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. Biotechnol. Biofuels 11, 1. doi: 10.1186/s13068-017-1003-x
|
Smanski, M.J., Zhou, H., Claesen, J., Shen, B., Fischbach, M.A., Voigt, C.A., 2016. Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol. 14, 135–149. doi: 10.1038/nrmicro.2015.24
|
Stephanopoulos, G., 2012. Synthetic biology and metabolic engineering. ACS Synth. Biol. 1, 514–525. doi: 10.1021/sb300094q
|
Sun, L., Jin, Y.S., 2021. Xylose assimilation for the efficient production of biofuels and chemicals by engineered Saccharomyces cerevisiae. Biotechnol. J. 16, e2000142. doi: 10.1002/biot.202000142
|
Sun, W., Zuo, Y.M., Yao, Z.Y., Gao, J.C., Shao, Z.Y., Lian, J.Z., 2022. Recent advances in synthetic biology applications of Pichia species. Synthetic Biology of Yeasts. Springer International Publishing, Cham, pp. 251–292.
|
Thomford, N.E., Senthebane, D.A., Rowe, A., Munro, D., Seele, P., Maroyi, A., Dzobo, K., 2018. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int. J. Mol. Sci. 19, 1578. doi: 10.3390/ijms19061578
|
Tippelt, A., Nett, M., 2021. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb. Cell Fact. 20, 161. doi: 10.1186/s12934-021-01650-y
|
Tolosa, J.J.M., Prieto, S.M., 2019. Chapter 25 - non-Saccharomyces yeasts: an enzymatic unexplored world to be exploited. Enzymes in Food Biotechnology. Elsevier, Amsterdam, pp. 433–450.
|
Torres, L.A.Z., Woiciechowski, A.L., Nishida, V.S., Valladares-Diestra, K.K., de Souza Vandenberghe, L.P., Filho, A.Z., Soccol, C.R., 2022. Imidazole pretreatment of oil palm empty fruit bunches for ethanol and succinic acid co-production by Saccharomyces cerevisiae and Pichia stipitis. Bioenerg. Res. 1–11.
|
Urui, M., Yamada, Y., Ikeda, Y., Nakagawa, A., Sato, F., Minami, H., Shitan, N., 2021. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production. Microb. Cell Fact. 20, 200. doi: 10.1186/s12934-021-01687-z
|
Varela, J., Varela, C., 2019. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr. Opin. Biotechnol. 56, 88–96.
|
Velázquez, H.D., Cerón-Camacho, R., Mosqueira-Mondragón, M.L., Hernández-Cortez, J.G., de la Fuente, J.A.M., Hernández-Pichardo, M.L., Beltrán-Oviedo, T.A., Martínez-Palou, R., 2022. Recent progress on catalyst technologies for high quality gasoline production. Catal. Rev. 1–221. doi: 10.1080/01614940.2021.2003084
|
Vicente, J., Calderón, F., Santos, A., Marquina, D., Benito, S., 2021. High potential of Pichia kluyveri and other Pichia species in wine technology. Int. J. Mol. Sci. 22, 1196. doi: 10.3390/ijms22031196
|
Walker, G.M., Walker, R.S.K., 2018. Chapter three - enhancing yeast alcoholic fermentations. Gadd, G.M., Sariaslani, S.. Advances in Applied Microbiology 87–129.
|
Wang, L., Dash, S., Ng, C.Y., Maranas, C.D., 2017. A review of computational tools for design and reconstruction of metabolic pathways. Synth. Syst. Biotechnol. 2, 243–252. doi: 10.1016/j.synbio.2017.11.002
|
Wang, R.F., Zhao, S.J., Wang, Z.T., Koffas, M.A., 2020. Recent advances in modular co-culture engineering for synthesis of natural products. Curr. Opin. Biotechnol. 62, 65–71. doi: 10.1016/j.copbio.2019.09.004
|
Weninger, A., Fischer, J.E., Raschmanová, H., Kniely, C., Vogl, T., Glieder, A., 2018. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J. Cell. Biochem. 119, 3183–3198. doi: 10.1002/jcb.26474
|
Weninger, A., Hatzl, A.M., Schmid, C., Vogl, T., Glieder, A., 2016. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J. Biotechnol. 235, 139–149. doi: 10.1016/j.jbiotec.2016.03.027
|
Werten, M.W.T., Eggink, G., Cohen Stuart, M.A., de Wolf, F.A., 2019. Production of protein-based polymers in Pichia pastoris. Biotechnol. Adv. 37, 642–666. doi: 10.1016/j.biotechadv.2019.03.012
|
Wriessnegger, T., Augustin, P., Engleder, M., Leitner, E., Müller, M., Kaluzna, I., Schürmann, M., Mink, D., Zellnig, G., Schwab, H., Pichler, H., 2014. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab. Eng. 24, 18–29. doi: 10.1016/j.ymben.2014.04.001
|
Xu, R., Chen, Z.R., Chen, Y.Y., Wang, X.Y., Zhang, Y., Li, X., Wang, F., 2023. Multiple strategies for high-efficiency expression of Thermomyces lanuginosus lipase in Pichia pastoris and production of biodiesel in solvent-free system. Fuel 333, 126246. doi: 10.1016/j.fuel.2022.126246
|
Yuan, S.F., Brooks, S.M., Nguyen, A.W., Lin, W.L., Johnston, T.G., Maynard, J.A., Nelson, A., Alper, H.S., 2021. Bioproduced proteins on demand (bio-POD) in hydrogels using Pichia pastoris. Bioact. Mater. 6, 2390–2399. doi: 10.1016/j.bioactmat.2021.01.019
|
Zahrl, R.J., Peña, D.A., Mattanovich, D., Gasser, B., 2017. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res. 17, fox068.
|
Zhang, H.X., Du, H., Xu, Y., 2021. Volatile organic compound-mediated antifungal activity of Pichia spp. and its effect on the metabolic profiles of fermentation communities. Appl. Environ. Microbiol. 87 e02992–e02920.
|
Zhang, Y.L., Wang, Y., Zhou, Z.X., Wang, P.L., Xi, X.T., Hu, S., Xu, R.R., Du, G.C., Li, J.H., Chen, J., Kang, Z., 2022. Synthesis of bioengineered heparin by recombinant yeast Pichia pastoris. Green Chem. 24, 3180–3192. doi: 10.1039/d1gc04672a
|
Zhao, X.R., 2020. Chapter 3 - systems and synthetic biology-aided biosynthesis pathway design. Systems and Synthetic Metabolic Engineering. Elsevier, Amsterdam, pp. 51–75.
|
Zhu, T.C., Sun, H.B., Wang, M.Y., Li, Y., 2019. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: current status and future perspectives. Biotechnol. J. 14, e1800694. doi: 10.1002/biot.201800694
|