Citation: | Yejun Deng, Xiang Wang, Caihong Zhang, Pujun Xie, Lixin Huang. Inhibitory effect of a Chinese quince seed peptide on protein glycation: A mechanism study[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 187-197. doi: 10.1016/j.jobab.2023.01.008 |
Abdallah, H.M., El-Bassossy, H., Mohamed, G.A., El-Halawany, A.M., Alshali, K.Z., Banjar, Z.M., 2016. Phenolics from Garcinia mangostana inhibit advanced glycation endproducts formation: effect on amadori products, cross-linked structures and protein thiols. Molecules 21, 251. doi: 10.3390/molecules21020251
|
Anis, M.A., Sreerama, Y.N., 2020. Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics. Food Chem. 315, 126265. doi: 10.1016/j.foodchem.2020.126265
|
Awasthi, S., Preethy, R., Saraswathi, N.T., 2019. Nordihydroguaiaretic acid prevents glycation induced structural alterations and aggregation of albumin. Int. J. Biol. Macromol. 122, 479–484. doi: 10.1016/j.ijbiomac.2018.10.173
|
Awasthi, S., Saraswathi, N.T., 2015. Silybin, a flavonolignan from milk thistle seeds, restrains the early and advanced glycation end product modification of albumin. RSC Adv. 5, 87660–87666. doi: 10.1039/C5RA15550A
|
Awasthi, S., Saraswathi, N.T., 2016. Carbonyl scavenging and chemical chaperon like function of essential amino acids attenuates non-enzymatic glycation of albumin. RSC Adv. 6, 24557–24564. doi: 10.1039/C5RA27460E
|
Delgado-Andrade, C., Fogliano, V., 2018. Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: physiological consequences of their intake. Annu. Rev. Food Sci. Technol. 9, 271–291. doi: 10.1146/annurev-food-030117-012441
|
Deng, Y.J., Huang, L.X., Zhang, C.H., Xie, P.J., Cheng, J., Wang, X., Liu, L.J., 2020. Skin-care functions of peptides prepared from Chinese quince seed protein: sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crops Prod. 148, 112331. doi: 10.1016/j.indcrop.2020.112331
|
Dorman, H.J.D., Koşar, M., Kahlos, K., Holm, Y., Hiltunen, R., 2003. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51, 4563–4569. doi: 10.1021/jf034108k
|
Girish, T.K., Rao, U.J.P., 2016. Protein glycation and aggregation inhibitory potency of biomolecules from black gram milled by-product. J. Sci. Food Agric. 96, 4973–4983. doi: 10.1002/jsfa.7980
|
González, I., Morales, M.A., Rojas, A., 2020. Polyphenols and AGEs/RAGE axis. trends and challenges. Food Res. Int. 129, 108843. doi: 10.1016/j.foodres.2019.108843
|
Han, C.H., Lin, Y.S., Lin, S.Y., Hou, W.C., 2014. Antioxidant and antiglycation activities of the synthesised dipeptide, Asn-Trp, derived from computer-aided simulation of yam dioscorin hydrolysis and its analogue, Gln-Trp. Food Chem. 147, 195–202. doi: 10.1016/j.foodchem.2013.09.109
|
Jiang, K.Y., Huang, C.H., Jiao, R., Bai, W.B., Zheng, J., Ou, S.Y., 2019. Adducts formed during protein digestion decreased the toxicity of five carbonyl compounds against Caco-2 cells. J. Hazard. Mater. 363, 26–33. doi: 10.1016/j.jhazmat.2018.09.053
|
Kazemi, F., Divsalar, A., Saboury, A.A., Seyedarabi, A., 2019. Propolis nanoparticles prevent structural changes in human hemoglobin during glycation and fructation. Colloids Surf. B Biointerfaces 177, 188–195. doi: 10.1016/j.colsurfb.2019.01.046
|
Kuerban, A., Al-Ghafari, A.B., ALGhamadi, S.A., Syed, F.Q., Mirza, M.B., Mohammed, F.A., Abulnaja, K.O., Alshaibi, H.F., Alsufiani, H.M., Kumosani, T.A., Al-Malki, A.L., Moselhy, S.S., 2020a. Potential antiglycation, antioxidant and antiproliferative activities of Vicia faba peptides. J. Food Meas. Charact. 14, 2155–2162. doi: 10.1007/s11694-020-00462-9
|
Kuerban, A., Al-Malki, A.L., Kumosani, T.A., Sheikh, R.A., Al-Abbasi, F.A.M., Alshubaily, F.A., Omar Abulnaja, K., Salama Moselhy, S., 2020b. Identification, protein antiglycation, antioxidant, antiproliferative, and molecular docking of novel bioactive peptides produced from hydrolysis of Lens culinaris. J. Food Biochem. 44, e13494.
|
Lan, M.Y., Li, H.M., Tao, G., Lin, J., Lu, M.W., Yan, R.A., Huang, J.Q., 2020. Effects of four bamboo derived flavonoids on advanced glycation end products formation in vitro. J. Funct. Foods 71, 103976. doi: 10.1016/j.jff.2020.103976
|
Liang, Z.L., Chen, X., Li, L., Li, B., Yang, Z., 2020. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit. Rev. Food Sci. Nutr. 60, 3475–3491. doi: 10.1080/10408398.2019.1693958
|
Liu, J.L., He, Y.L., Wang, S., He, Y., Wang, W.Y., Li, Q.J., Cao, X.Y., 2018. Ferulic acid inhibits advanced glycation end products (AGEs) formation and mitigates the AGEs-induced inflammatory response in HUVEC cells. J. Funct. Foods 48, 19–26. doi: 10.1117/12.2501789
|
Ni, M.T., Song, X., Pan, J.H., Gong, D.M., Zhang, G.W., 2021. Vitexin inhibits protein glycation through structural protection, methylglyoxal trapping, and alteration of glycation site. J. Agric. Food Chem. 69, 2462–2476. doi: 10.1021/acs.jafc.0c08052
|
Poulsen, M.W., Hedegaard, R.V., Andersen, J.M., de Courten, B., Bügel, S., Nielsen, J., Skibsted, L.H., Dragsted, L.O., 2013. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 60, 10–37. doi: 10.1016/j.fct.2013.06.052
|
Prasanna, G., Saraswathi, N.T., 2017. Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin. Int. J. Biol. Macromol. 95, 121–125. doi: 10.1016/j.ijbiomac.2016.11.035
|
Sahreen, S., Khan, M.R., Khan, R., 2011. Phenolic compounds and antioxidant activities of Rumex hastatus D. Don. leaves. J. Med. Plants Res. 5, 2755–2765.
|
Sarmah, S., Das, S., Roy, A.S., 2020. Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: in vitro and molecular docking analysis. Int. J. Biol. Macromol. 165, 2275–2285. doi: 10.1016/j.ijbiomac.2020.10.023
|
Sompong, W., Meeprom, A., Cheng, H., Adisakwattana, S., 2013. A comparative study of ferulic acid on different monosaccharide-mediated protein glycation and oxidative damage in bovine serum albumin. Molecules 18, 13886–13903. doi: 10.3390/molecules181113886
|
Sun, L.P., Su, X.J., Zhuang, Y.L., 2016. Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus snicus. Int. J. Biol. Macromol. 92, 607–614. doi: 10.1016/j.ijbiomac.2016.07.014
|
Szkudlarek, A., Sułkowska, A., Maciążek-Jurczyk, M., Chudzik, M., Równicka-Zubik, J., 2016. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 645–653. doi: 10.1016/j.saa.2015.01.120
|
Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461.
|
Wang, J., Sun, B.G., Cao, Y.P., Tian, Y., 2009. Protein glycation inhibitory activity of wheat bran feruloyl oligosaccharides. Food Chem. 112, 350–353. doi: 10.1016/j.foodchem.2008.05.072
|
Wang, X.M., Chen, H.X., Fu, X.G., Li, S.Q., Wei, J., 2017. A novel antioxidant and ACE inhibitory peptide from rice bran protein: biochemical characterization and molecular docking study. LWT 75, 93–99. doi: 10.1016/j.lwt.2016.08.047
|
Wu, C.H., Huang, S.M., Lin, J.A., Yen, G.C., 2011. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct. 2, 224–234. doi: 10.1039/c1fo10026b
|
Wu, X.Q., Zhang, G.W., Hu, X., Pan, J.H., Liao, Y.J., Ding, H.F., 2019. Inhibitory effect of epicatechin gallate on protein glycation. Food Res. Int. 122, 230–240. doi: 10.3390/ani9050230
|
Xie, X.F., Zou, G.L., Li, C.H., 2015. Antitumor and immunomodulatory activities of a water-soluble polysaccharide from Chaenomeles speciosa. Carbohydr. Polym. 132, 323–329. doi: 10.1016/j.carbpol.2015.06.046
|
Yu, G., Zhang, Q.Z., Wang, Y.B., Yang, Q., Yu, H.J., Li, H., Chen, J., Fu, L.L., 2021. Sulfated polysaccharides from red seaweed Gelidium amansii: structural characteristics, anti-oxidant and anti-glycation properties, and development of bioactive films. Food Hydrocoll. 119, 106820. doi: 10.1016/j.foodhyd.2021.106820
|
Zeng, L., Ding, H.F., Hu, X., Zhang, G.W., Gong, D.M., 2019. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 271, 70–79. doi: 10.1016/j.foodchem.2018.07.148
|
Zhang, Q.Z., Huang, Z.J., Wang, Y., Wang, Y.B., Fu, L.L., Su, L.J., 2021. Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation. Food Chem. 361, 130102. doi: 10.1016/j.foodchem.2021.130102
|
Zhang, Z.R., Zhou, F.B., Liu, X.L., Zhao, M.M., 2018. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 258, 269–277. doi: 10.1016/j.foodchem.2018.03.030
|
Zhao, D., Sheng, B.L., Wu, Y., Li, H., Xu, D., Nian, Y.Q., Mao, S.Y., Li, C.B., Xu, X.L., Zhou, G.H., 2019. Comparison of free and bound advanced glycation end products in food: a review on the possible influence on human health. J. Agric. Food Chem. 67, 14007–14018. doi: 10.1021/acs.jafc.9b05891
|
Zhao, L., Zhu, X.L., Yu, Y., He, L.Z., Li, Y.B., Zhang, L., Liu, R., 2021. Comprehensive analysis of the anti-glycation effect of peanut skin extract. Food Chem. 362, 130169. doi: 10.1016/j.foodchem.2021.130169
|
Zhu, R.G., Zhang, X.Y., Wang, Y., Zhang, L.J., Zhao, J., Chen, G., Fan, J.G., Jia, Y.F., Yan, F.W., Ning, C., 2019. Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr. Polym. 210, 73–84. doi: 10.1016/j.carbpol.2019.01.037
|
Zou, T.B., He, T.P., Li, H.B., Tang, H.W., Xia, E.Q., 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21, 72. doi: 10.3390/molecules21010072
|