Volume 8 Issue 2
May  2023
Turn off MathJax
Article Contents
Yejun Deng, Xiang Wang, Caihong Zhang, Pujun Xie, Lixin Huang. Inhibitory effect of a Chinese quince seed peptide on protein glycation: A mechanism study[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 187-197. doi: 10.1016/j.jobab.2023.01.008
Citation: Yejun Deng, Xiang Wang, Caihong Zhang, Pujun Xie, Lixin Huang. Inhibitory effect of a Chinese quince seed peptide on protein glycation: A mechanism study[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 187-197. doi: 10.1016/j.jobab.2023.01.008

Inhibitory effect of a Chinese quince seed peptide on protein glycation: A mechanism study

doi: 10.1016/j.jobab.2023.01.008
More Information
  • Corresponding author: E-mail address: l_x_huang@163.com (L. Huang)
  • Available Online: 2023-01-18
  • Publish Date: 2023-05-01
  • Non-enzymatic glycation can cause the formation and accumulation of advanced glycation end products (AGEs), and it poses great threats to human health. It is urgent to search for safe and efficient inhibitors to prevent reducing sugar induced protein glycation. In this study, we investigated the anti-glycation activity and mechanism of an identified peptide, Asparagine-Tyrosine-Arginine-Arginine-Glutamic acid (NYRRE) from Chinese quince seed protein hydrolysate, by multispectroscopy, confocal imaging, and computational molecular simulation. Firstly, it was found that NYRRE could scavenge hydroxyl radicals and chelate Fe2+. Besides, the NYRRE was effective in every stage of fructose induced bovine serum albumin (BSA) glycation. The NYRRE could reduce the formation of fructosamine, carbonyl compounds, glycoxidation products and β-amyloid structure. Meanwhile, NYRRE could protect thiol groups and stabilize the spatial conformation of BSA. The NYRRE presented strong inhibition in fluorescent AGEs, and 68.19% of total AGEs formation was prevented with NYRRE at 15 mmol/L. The results of molecular simulation indicated that NYRRE could insert into the hydrophobic pocket of BSA and interact with hot spots, including arginine and lysine residues. The mechanism of NYRRE inhibiting protein glycation could be due to its antioxidant activity, BSA structure stabilizing ability, and specific bond with glycation sites of BSA. These results provided a valuable reference for developing NYRRE as an efficient antiglycation agent in preventing glycation-mediated diseases.


  • Declaration of Competing Interest There are no conflicts to declare.
  • loading
  • Abdallah, H.M., El-Bassossy, H., Mohamed, G.A., El-Halawany, A.M., Alshali, K.Z., Banjar, Z.M., 2016. Phenolics from Garcinia mangostana inhibit advanced glycation endproducts formation: effect on amadori products, cross-linked structures and protein thiols. Molecules 21, 251. doi: 10.3390/molecules21020251
    Anis, M.A., Sreerama, Y.N., 2020. Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics. Food Chem. 315, 126265. doi: 10.1016/j.foodchem.2020.126265
    Awasthi, S., Preethy, R., Saraswathi, N.T., 2019. Nordihydroguaiaretic acid prevents glycation induced structural alterations and aggregation of albumin. Int. J. Biol. Macromol. 122, 479–484. doi: 10.1016/j.ijbiomac.2018.10.173
    Awasthi, S., Saraswathi, N.T., 2015. Silybin, a flavonolignan from milk thistle seeds, restrains the early and advanced glycation end product modification of albumin. RSC Adv. 5, 87660–87666. doi: 10.1039/C5RA15550A
    Awasthi, S., Saraswathi, N.T., 2016. Carbonyl scavenging and chemical chaperon like function of essential amino acids attenuates non-enzymatic glycation of albumin. RSC Adv. 6, 24557–24564. doi: 10.1039/C5RA27460E
    Delgado-Andrade, C., Fogliano, V., 2018. Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: physiological consequences of their intake. Annu. Rev. Food Sci. Technol. 9, 271–291. doi: 10.1146/annurev-food-030117-012441
    Deng, Y.J., Huang, L.X., Zhang, C.H., Xie, P.J., Cheng, J., Wang, X., Liu, L.J., 2020. Skin-care functions of peptides prepared from Chinese quince seed protein: sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crops Prod. 148, 112331. doi: 10.1016/j.indcrop.2020.112331
    Dorman, H.J.D., Koşar, M., Kahlos, K., Holm, Y., Hiltunen, R., 2003. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 51, 4563–4569. doi: 10.1021/jf034108k
    Girish, T.K., Rao, U.J.P., 2016. Protein glycation and aggregation inhibitory potency of biomolecules from black gram milled by-product. J. Sci. Food Agric. 96, 4973–4983. doi: 10.1002/jsfa.7980
    González, I., Morales, M.A., Rojas, A., 2020. Polyphenols and AGEs/RAGE axis. trends and challenges. Food Res. Int. 129, 108843. doi: 10.1016/j.foodres.2019.108843
    Han, C.H., Lin, Y.S., Lin, S.Y., Hou, W.C., 2014. Antioxidant and antiglycation activities of the synthesised dipeptide, Asn-Trp, derived from computer-aided simulation of yam dioscorin hydrolysis and its analogue, Gln-Trp. Food Chem. 147, 195–202. doi: 10.1016/j.foodchem.2013.09.109
    Jiang, K.Y., Huang, C.H., Jiao, R., Bai, W.B., Zheng, J., Ou, S.Y., 2019. Adducts formed during protein digestion decreased the toxicity of five carbonyl compounds against Caco-2 cells. J. Hazard. Mater. 363, 26–33. doi: 10.1016/j.jhazmat.2018.09.053
    Kazemi, F., Divsalar, A., Saboury, A.A., Seyedarabi, A., 2019. Propolis nanoparticles prevent structural changes in human hemoglobin during glycation and fructation. Colloids Surf. B Biointerfaces 177, 188–195. doi: 10.1016/j.colsurfb.2019.01.046
    Kuerban, A., Al-Ghafari, A.B., ALGhamadi, S.A., Syed, F.Q., Mirza, M.B., Mohammed, F.A., Abulnaja, K.O., Alshaibi, H.F., Alsufiani, H.M., Kumosani, T.A., Al-Malki, A.L., Moselhy, S.S., 2020a. Potential antiglycation, antioxidant and antiproliferative activities of Vicia faba peptides. J. Food Meas. Charact. 14, 2155–2162. doi: 10.1007/s11694-020-00462-9
    Kuerban, A., Al-Malki, A.L., Kumosani, T.A., Sheikh, R.A., Al-Abbasi, F.A.M., Alshubaily, F.A., Omar Abulnaja, K., Salama Moselhy, S., 2020b. Identification, protein antiglycation, antioxidant, antiproliferative, and molecular docking of novel bioactive peptides produced from hydrolysis of Lens culinaris. J. Food Biochem. 44, e13494.
    Lan, M.Y., Li, H.M., Tao, G., Lin, J., Lu, M.W., Yan, R.A., Huang, J.Q., 2020. Effects of four bamboo derived flavonoids on advanced glycation end products formation in vitro. J. Funct. Foods 71, 103976. doi: 10.1016/j.jff.2020.103976
    Liang, Z.L., Chen, X., Li, L., Li, B., Yang, Z., 2020. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit. Rev. Food Sci. Nutr. 60, 3475–3491. doi: 10.1080/10408398.2019.1693958
    Liu, J.L., He, Y.L., Wang, S., He, Y., Wang, W.Y., Li, Q.J., Cao, X.Y., 2018. Ferulic acid inhibits advanced glycation end products (AGEs) formation and mitigates the AGEs-induced inflammatory response in HUVEC cells. J. Funct. Foods 48, 19–26. doi: 10.1117/12.2501789
    Ni, M.T., Song, X., Pan, J.H., Gong, D.M., Zhang, G.W., 2021. Vitexin inhibits protein glycation through structural protection, methylglyoxal trapping, and alteration of glycation site. J. Agric. Food Chem. 69, 2462–2476. doi: 10.1021/acs.jafc.0c08052
    Poulsen, M.W., Hedegaard, R.V., Andersen, J.M., de Courten, B., Bügel, S., Nielsen, J., Skibsted, L.H., Dragsted, L.O., 2013. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 60, 10–37. doi: 10.1016/j.fct.2013.06.052
    Prasanna, G., Saraswathi, N.T., 2017. Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin. Int. J. Biol. Macromol. 95, 121–125. doi: 10.1016/j.ijbiomac.2016.11.035
    Sahreen, S., Khan, M.R., Khan, R., 2011. Phenolic compounds and antioxidant activities of Rumex hastatus D. Don. leaves. J. Med. Plants Res. 5, 2755–2765.
    Sarmah, S., Das, S., Roy, A.S., 2020. Protective actions of bioactive flavonoids chrysin and luteolin on the glyoxal induced formation of advanced glycation end products and aggregation of human serum albumin: in vitro and molecular docking analysis. Int. J. Biol. Macromol. 165, 2275–2285. doi: 10.1016/j.ijbiomac.2020.10.023
    Sompong, W., Meeprom, A., Cheng, H., Adisakwattana, S., 2013. A comparative study of ferulic acid on different monosaccharide-mediated protein glycation and oxidative damage in bovine serum albumin. Molecules 18, 13886–13903. doi: 10.3390/molecules181113886
    Sun, L.P., Su, X.J., Zhuang, Y.L., 2016. Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus snicus. Int. J. Biol. Macromol. 92, 607–614. doi: 10.1016/j.ijbiomac.2016.07.014
    Szkudlarek, A., Sułkowska, A., Maciążek-Jurczyk, M., Chudzik, M., Równicka-Zubik, J., 2016. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 645–653. doi: 10.1016/j.saa.2015.01.120
    Trott, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461.
    Wang, J., Sun, B.G., Cao, Y.P., Tian, Y., 2009. Protein glycation inhibitory activity of wheat bran feruloyl oligosaccharides. Food Chem. 112, 350–353. doi: 10.1016/j.foodchem.2008.05.072
    Wang, X.M., Chen, H.X., Fu, X.G., Li, S.Q., Wei, J., 2017. A novel antioxidant and ACE inhibitory peptide from rice bran protein: biochemical characterization and molecular docking study. LWT 75, 93–99. doi: 10.1016/j.lwt.2016.08.047
    Wu, C.H., Huang, S.M., Lin, J.A., Yen, G.C., 2011. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct. 2, 224–234. doi: 10.1039/c1fo10026b
    Wu, X.Q., Zhang, G.W., Hu, X., Pan, J.H., Liao, Y.J., Ding, H.F., 2019. Inhibitory effect of epicatechin gallate on protein glycation. Food Res. Int. 122, 230–240. doi: 10.3390/ani9050230
    Xie, X.F., Zou, G.L., Li, C.H., 2015. Antitumor and immunomodulatory activities of a water-soluble polysaccharide from Chaenomeles speciosa. Carbohydr. Polym. 132, 323–329. doi: 10.1016/j.carbpol.2015.06.046
    Yu, G., Zhang, Q.Z., Wang, Y.B., Yang, Q., Yu, H.J., Li, H., Chen, J., Fu, L.L., 2021. Sulfated polysaccharides from red seaweed Gelidium amansii: structural characteristics, anti-oxidant and anti-glycation properties, and development of bioactive films. Food Hydrocoll. 119, 106820. doi: 10.1016/j.foodhyd.2021.106820
    Zeng, L., Ding, H.F., Hu, X., Zhang, G.W., Gong, D.M., 2019. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 271, 70–79. doi: 10.1016/j.foodchem.2018.07.148
    Zhang, Q.Z., Huang, Z.J., Wang, Y., Wang, Y.B., Fu, L.L., Su, L.J., 2021. Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: a mechanistic investigation. Food Chem. 361, 130102. doi: 10.1016/j.foodchem.2021.130102
    Zhang, Z.R., Zhou, F.B., Liu, X.L., Zhao, M.M., 2018. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 258, 269–277. doi: 10.1016/j.foodchem.2018.03.030
    Zhao, D., Sheng, B.L., Wu, Y., Li, H., Xu, D., Nian, Y.Q., Mao, S.Y., Li, C.B., Xu, X.L., Zhou, G.H., 2019. Comparison of free and bound advanced glycation end products in food: a review on the possible influence on human health. J. Agric. Food Chem. 67, 14007–14018. doi: 10.1021/acs.jafc.9b05891
    Zhao, L., Zhu, X.L., Yu, Y., He, L.Z., Li, Y.B., Zhang, L., Liu, R., 2021. Comprehensive analysis of the anti-glycation effect of peanut skin extract. Food Chem. 362, 130169. doi: 10.1016/j.foodchem.2021.130169
    Zhu, R.G., Zhang, X.Y., Wang, Y., Zhang, L.J., Zhao, J., Chen, G., Fan, J.G., Jia, Y.F., Yan, F.W., Ning, C., 2019. Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr. Polym. 210, 73–84. doi: 10.1016/j.carbpol.2019.01.037
    Zou, T.B., He, T.P., Li, H.B., Tang, H.W., Xia, E.Q., 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21, 72. doi: 10.3390/molecules21010072
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (68) PDF downloads(1) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint