Volume 8 Issue 2
May  2023
Turn off MathJax
Article Contents
Hesam Salimi Shahraki, Rani Bushra, Nimra Shakeel, Anees Ahmad, Quratulen, Mehraj Ahmad, Christos Ritzoulis. Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: From photocatalytic decomposition of methylene blue to antimicrobial activity[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 162-175. doi: 10.1016/j.jobab.2023.01.009
Citation: Hesam Salimi Shahraki, Rani Bushra, Nimra Shakeel, Anees Ahmad, Quratulen, Mehraj Ahmad, Christos Ritzoulis. Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: From photocatalytic decomposition of methylene blue to antimicrobial activity[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 162-175. doi: 10.1016/j.jobab.2023.01.009

Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: From photocatalytic decomposition of methylene blue to antimicrobial activity

doi: 10.1016/j.jobab.2023.01.009
More Information
  • Corresponding author: E-mail address: critzou@ihu.gr (C. Ritzoulis)
  • Available Online: 2023-01-20
  • Publish Date: 2023-05-01
  • Carbon dots (CDs) have gained unprecedented attention as a novel luminescent zero-dimensional carbon nanomaterial owing to their diverse industrial applications. Herein, we reported the sustainable synthesis of fluorescent CDs from papaya peel waste, acting as a natural carbon originator. As-prepared CDs and reduced graphene oxide (RGO) were fabricated in the composites through a facile one-step hydrothermal method. Synthesized RGO/CDs (RC) nanocomposites were characterized using spectroscopic, diffraction, and electron-microscopic techniques. Nanocomposites with variable RGO to CD mass ratios were tested for photodegradation of textile dye methylene blue (MB). The highest photocatalytic activity (degradation efficiency of 87% in 135 min) was obtained in the nanocomposite containing a 2꞉1 mass ratio (RC2). The RGO sheets in the nanocomposite acted as media for electron acceptors, promoting the fast transfer and separation of photoinduced electrons during CDs excitation, thus preventing the recombination of the electron and holes. Based on the agar well diffusion assay, the nanocomposites exhibited excellent antibacterial activity than other tested materials against Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacterium. The largest inhibition zone area (22 mm), i.e., the highest antimicrobial activity, was obtained in the nanocomposite tested against Gram-positive strains. Taken together, the synergistic effect of RGO and CDs enhanced the photocatalytic and antibacterial performance of synthesized nanocomposite material.

     

  • Declaration of Competing Interest The authors declare no competing financial interest.
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.01.009.
    Supplementary materials
  • loading
  • Abidi, N., Duplay, J., Jada, A., Errais, E., Ghazi, M., Semhi, K., Trabelsi-Ayadi, M., 2019. Removal of anionic dye from textile industries' effluents by using Tunisian clays as adsorbents. Ζeta potential and streaming-induced potential measurements. C.R. Chim. 22, 113–125. doi: 10.1016/j.crci.2018.10.006
    Ahmad, R., Ansari, K., 2020. Chemically treated Lawsonia inermis seeds powder (CTLISP): an eco-friendly adsorbent for the removal of brilliant green dye from aqueous solution. Groundw. Sustain. Dev. 11, 100417. doi: 10.1016/j.gsd.2020.100417
    Aji, M.P., Wiguna, P.A., Karunawan, J., Wati, A.L., 2017. Removal of heavy metal nickel-ions from wastewaters using carbon nanodots from frying oil. Procedia Eng. 170, 36–40. doi: 10.1016/j.proeng.2017.03.007
    Ajiboye, T.O., Oyewo, O.A., Onwudiwe, D.C., 2021. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 29, 100277. doi: 10.1016/j.flatc.2021.100277
    Alarfaj, N.A., El-Tohamy, M.F., Oraby, H.F., 2018. CA 19-9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite. Int. J. Mol. Sci. 19, 1162. doi: 10.3390/ijms19041162
    Alqadami, A.A., Naushad, M., Alothman, Z.A., Ahamad, T., 2018. Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. J. Environ. Manag. 223, 29–36. doi: 10.1016/j.jenvman.2018.05.090
    Asadzadeh-Khaneghah, S., Habibi-Yangjeh, A., 2020. G-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J. Clean. Prod. 276, 124319. doi: 10.1016/j.jclepro.2020.124319
    Ashritha, M.G., Rondiya, S.R., Cross, R.W., Dzade, N.Y., Dhole, S.D., Hareesh, K., Sunitha, D.V., 2021. Experimental and computational studies of sonochemical assisted anchoring of carbon quantum dots on reduced graphene oxide sheets towards the photocatalytic activity. Appl. Surf. Sci. 545, 148962. doi: 10.1016/j.apsusc.2021.148962
    Bokare, A., Nordlund, D., Melendrez, C., Robinson, R., Keles, O., Wolcott, A., Erogbogbo, F., 2020. Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diam. Relat. Mater. 110, 108101. doi: 10.1016/j.diamond.2020.108101
    Bushra, R., Arfin, T., Oves, M., Raza, W., Mohammad, F., Alam Khan, M., Ahmad, A., Azam, A., Muneer, M., 2016. Development of PANI/MWCNTs decorated with cobalt oxide nanoparticles towards multiple electrochemical, photocatalytic and biomedical application sites. New J. Chem. 40, 9448–9459. doi: 10.1039/C6NJ02054B
    Bushra, R., Mohamad, S., Alias, Y., Jin, Y.C., Ahmad, M., 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review. Microporous Mesoporous Mater. 319, 111040. doi: 10.1016/j.micromeso.2021.111040
    Bushra, R., Shahadat, M., Ahmad, A., Nabi, S.A., Umar, K., Oves, M., Raeissi, A.S., Muneer, M., 2014. Synthesis, characterization, antimicrobial activity and applications of polyanilineTi(Ⅳ)arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 264, 481–489. doi: 10.1016/j.jhazmat.2013.09.044
    Chen, W.F., Li, D.J., Tian, L., Xiang, W., Wang, T.Y., Hu, W.M., Hu, Y.L., Chen, S.N., Chen, J.F., Dai, Z.X., 2018. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 20, 4438–4442. doi: 10.1039/c8gc02106f
    Chien, C.T., Li, S.S., Lai, W.J., Yeh, Y.C., Chen, H.A., Chen, I.S., Chen, L.C., Chen, K.H., Nemoto, T., Isoda, S., Chen, M.W., Fujita, T., Eda, G., Yamaguchi, H., Chhowalla, M., Chen, C.W., 2012. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed Engl. 51, 6662–6666. doi: 10.1002/anie.201200474
    Cui, L., Ren, X., Sun, M.T., Liu, H.Y., Xia, L.X., 2021. Carbon dots: synthesis, properties and applications. Nanomaterials (Basel) 11, 3419. doi: 10.3390/nano11123419
    Dang, X.M., Zhao, H.M., Wang, X.N., Sailijiang, T., Chen, S., Quan, X., 2018. Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim. Acta 185, 345. doi: 10.1007/s00604-018-2877-4
    Das, G.S., Shim, J.P., Bhatnagar, A., Tripathi, K.M., Kim, T., 2019. Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(Ⅲ) and ascorbic acid. Sci. Rep. 9, 15084. doi: 10.1038/s41598-019-49266-y
    Das, P., Maruthapandi, M., Saravanan, A., Natan, M., Jacobi, G., Banin, E., Gedanken, A., 2020. Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl. Nano Mater. 3, 11777–11790. doi: 10.1021/acsanm.0c02305
    De Oliveira, B.P., Da Silva Abreu, F.O.M., 2021. Carbon quantum dots synthesis from waste and by-products: perspectives and challenges. Mater. Lett. 282, 128764. doi: 10.1016/j.matlet.2020.128764
    Dong, X.L., Awak, M.A., Tomlinson, N., Tang, Y.A., Sun, Y.P., Yang, L.J., 2017. Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One 12, e0185324. doi: 10.1371/journal.pone.0185324
    Emam, A.N., Loutfy, S.A., Mostafa, A.A., Awad, H., Mohamed, M.B., 2017. Cyto-toxicity, biocompatibility and cellular response of carbon dots "plasmonic based nano-hybrids for bioimaging. RSC Adv. 7, 23502–23514. doi: 10.1039/C7RA01423F
    Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E., Merkens, W., Mielke, M., Oltmanns, P., Ross, B., Rotter, M., Schmithausen, R.M., Sonntag, H.G., Trautmann, M., 2017. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 12, Doc05.
    Facure, M.H.M., Schneider, R., Lima, J.B.S., Mercante, L.A., Correa, D.S., 2021. Graphene quantum dots-based nanocomposites applied in electrochemical sensors: a recent survey. Electrochem 2, 490–519. doi: 10.3390/electrochem2030032
    Fadllan, A., Marwoto, P., Aji, M.P., Susanto, Iswari, R.S., 2017. Synthesis of carbon nanodots from waste paper with hydrothermal method. AIP Conf. Proc. 1788, 030069. doi: 10.1063/1.4968322
    Fan, J.X., Li, D.H., Wang, X.M., 2016. Effect of modified graphene quantum dots on photocatalytic degradation property. Diam. Relat. Mater. 69, 81–85. doi: 10.1016/j.diamond.2016.07.008
    Ghirardello, M., Ramos-Soriano, J., Galan, M.C., 2021. Carbon dots as an emergent class of antimicrobial agents. Nanomaterials (Basel) 11, 1877. doi: 10.3390/nano11081877
    Gudimella, K.K., Gedda, G., Kumar, P.S., Babu, B.K., Yamajala, B., Rao, B.V., Singh, P.P., Kumar, D., Sharma, A., 2022. Novel synthesis of fluorescent carbon dots from bio-based Carica papaya Leaves: optical and structural properties with antioxidant and anti-inflammatory activities. Environ. Res. 204, 111854. doi: 10.1016/j.envres.2021.111854
    Hareesh K., Joshi, R.P., Sunitha, DV., Bhoraskar, V.N., Dhole, S.D., 2016. Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol. Appl. Surf. Sci. 389, 1050–1055. doi: 10.1016/j.apsusc.2016.08.034
    Heng, Z.W., Chong, W.C., Pang, Y.L., Sim, L.C., Koo, C.H., 2022. Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation. Chin. J. Chem. Eng. 51, 21–34. doi: 10.1016/j.cjche.2021.10.021
    Hoang, V.C., Nguyen, L.H., Gomes, V.G., 2019. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. J. Electroanal. Chem. 832, 87–96. doi: 10.1016/j.jelechem.2018.10.050
    Jain, A., Duvvuri, L.S., Farah, S., Beyth, N., Domb, A.J., Khan, W., 2014. Antimicrobial polymers. Adv. Healthc. Mater. 3, 1969–1985. doi: 10.1002/adhm.201400418
    Jin, Y.L., Tang, W.W., Wang, J.Y., Ren, F., Chen, Z.Y., Sun, Z.F., Ren, P.G., 2023. Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation. J. Alloys Compd. 932, 167627. doi: 10.1016/j.jallcom.2022.167627
    Kang, C., Huang, Y., Yang, H., Yan, X.F., Chen, Z.P., 2020. A review of carbon dots produced from biomass wastes. Nanomaterials (Basel) 10, 2316. doi: 10.3390/nano10112316
    Katheresan, V., Kansedo, J., Lau, S.Y., 2018. Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697. doi: 10.1016/j.jece.2018.06.060
    Krishnaiah, P., Atchudan, R., Perumal, S., Salama, E.S., Lee, Y.R., Jeon, B.H., 2022. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 286, 131764. doi: 10.1016/j.chemosphere.2021.131764
    Krishni, R.R., Foo, K.Y., Hameed, B.H., 2014. Adsorption of methylene blue onto papaya leaves: comparison of linear and nonlinear isotherm analysis. Desalin. Water Treat. 52, 6712–6719. doi: 10.1080/19443994.2013.827818
    Ławkowska, K., Pokrywczyńska, M., Koper, K., Kluth, L.A., Drewa, T., Adamowicz, J., 2021. Application of graphene in tissue engineering of the nervous system. Int. J. Mol. Sci. 23, 33. doi: 10.3390/ijms23010033
    Li, H.T., He, X.D., Kang, Z.H., Huang, H., Liu, Y., Liu, J.L., Lian, S.Y., Tsang, C.H.A., Yang, X.B., Lee, S.T., 2010. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed Engl. 49, 4430–4434. doi: 10.1002/anie.200906154
    Li, J.Y., Yun, X.R., Hu, Z.L., Xi, L.J., Li, N., Tang, H., Lu, P.C., Zhu, Y.R., 2019a. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 7, 26311–26325. doi: 10.1039/c9ta08151h
    Li, L.X., Wang, J., Jia, C., Lv, Y., Liu, Y., 2021. Co-pyrolysis of cyanobacteria and plastics to synthesize porous carbon and its application in methylene blue adsorption. J. Water Process. Eng. 39, 101753. doi: 10.1016/j.jwpe.2020.101753
    Li, Y.H., Liu, F.J., Cai, J.B., Huang, X.G., Lin, L.X., Lin, Y., Yang, H., Li, S.X., 2019b. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchem. J. 147, 1038–1047. doi: 10.1016/j.microc.2019.04.015
    Li, Y.J., Harroun, S.G., Su, Y.C., Huang, C.F., Unnikrishnan, B., Lin, H.J., Lin, C.H., Huang, C.C., 2016. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv. Healthc. Mater. 5, 2545–2554. doi: 10.1002/adhm.201600297
    Lightcap, I.V., Kosel, T.H., Kamat, P.V., 2010. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10, 577–583. doi: 10.1021/nl9035109
    Ma, C.L., Peng, L., Feng, Y.F., Shen, J.X., Xiao, Z.Q., Cai, K.Y., Yu, Y.H., Min, Y., Epstein, A.J., 2016. Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application. Synth. Met. 220, 227–235. doi: 10.1016/j.synthmet.2016.06.008
    Ma, H.F., He, J.L., Li, Z.Y., Dong, L.M., Guo, S.Z., Zhu, X.X., Li, D., Zang, L.H., Shi, L.L., Ba, T.E., 2022. Lignin-derived carbon quantum dots/Ni-MOL heterojunction from red phosphorus-assisted ball milling pretreatment and their application in photocatalysis: an insight from experiment and DFT calculation. Ind. Crops Prod. 189, 115829. doi: 10.1016/j.indcrop.2022.115829
    Maddu, A., Meliafatmah, R., Rustami, E., 2020. Enhancing photocatalytic degradationof methylene blue using ZnO/carbon dots nanocomposite derived from coffee grounds. Pol. J. Environ. Stud. 30, 273–282. doi: 10.15244/pjoes/120156
    Malik, W.A., Javed, S., 2021. Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Front. Bioeng. Biotechnol. 9, 800265. doi: 10.3389/fbioe.2021.800265
    Miller, S.I., 2016. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio 7, e01541–e01516.
    Phang, S.J., Tan, L.L., 2019. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal. Sci. Technol. 9, 5882–5905. doi: 10.1039/c9cy01452g
    Quan, B., Liu, W., Liu, Y.S., Zheng, Y., Yang, G.C., Ji, G.B., 2016. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties. J. Colloid Interface Sci. 481, 13–19. doi: 10.1016/j.jcis.2016.07.037
    Reza, K.M., Kurny, A.S. W, Gulshan, F., 2017. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 7, 1569–1578. doi: 10.1007/s13201-015-0367-y
    Salimi Shahraki, H., Ahmad, A., Bushra, R., 2022. Green carbon dots with multifaceted applications- Waste to wealth strategy. FlatChem 31, 100310. doi: 10.1016/j.flatc.2021.100310
    Shahid, M.M., Rameshkumar, P., Basirun, W.J., Juan, J.C., Huang, N.M., 2017. Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochim. Acta 237, 61–68. doi: 10.1016/j.electacta.2017.03.088
    Sharma, A., Gadly, T., Gupta, A., Ballal, A., Ghosh, S.K., Kumbhakar, M., 2016. Origin of excitation dependent fluorescence in carbon nanodots. J. Phys. Chem. Lett. 7, 3695–3702. doi: 10.1021/acs.jpclett.6b01791
    Silas, K., Ab Karim Ghani, W.A.W., Choong, T.S.Y., Rashid, U., 2020. Optimization of activated carbon monolith Co3O4-based catalyst for simultaneous SO2/NOx removal from flue gas using response surface methodology. Combust. Sci. Technol. 192, 786–803. doi: 10.1080/00102202.2019.1594797
    Simonin, J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254–263. doi: 10.1016/j.cej.2016.04.079
    Singha, K., Pandit, P., Maity, S., Sharma, S.R., 2021. Harmful environmental effects for textile chemical dyeing practice. Green Chemistry for Sustainable Textiles. Amsterdam: Elsevier, 153–164.
    Smith, A.T., LaChance, A.M., Zeng, S.S., Liu, B., Sun, L.Y., 2019. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1, 31–47. doi: 10.1016/j.nanoms.2019.02.004
    Thambiraj S., Ravi Shankaran, D., 2016. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443. doi: 10.1016/j.apsusc.2016.08.106
    Vu Nu, T.T., Thi Tran, N.H., Truong, P.L., Phan, B.T., Nguyen Dinh, M.T., Dinh, V.P., Phan, T.S., Go, S., Chang, M., Loan Trinh, K.T., Van Tran, V., 2022. Green synthesis of microalgae-based carbon dots for decoration of TiO2 nanoparticles in enhancement of organic dye photodegradation. Environ. Res. 206, 112631. doi: 10.1016/j.envres.2021.112631
    Wang, N., Wang, Y.T., Guo, T.T., Yang, T., Chen, M.L., Wang, J.H., 2016. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (Ⅲ) and Escherichia coli. Biosens. Bioelectron. 85, 68–75. doi: 10.1016/j.bios.2016.04.089
    Wang, X.X., Li, L.Y., Fu, Z., Cui, F.L., 2018. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance. J. Mol. Liq. 268, 578–586. doi: 10.1016/j.molliq.2018.07.086
    Wu, L.J., Liu, X.W., Lv, G.C., Zhu, R.L., Tian, L.T., Liu, M., Li, Y.X., Rao, W.X., Liu, T.M., Liao, L.B., 2021. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci. Rep. 11, 10640. doi: 10.1038/s41598-021-90235-1
    Xie, X.Y., Li, S., Qi, K.M., Wang, Z.W., 2021. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: the role of selectively more CQDs decoration and Z-scheme structure. Chem. Eng. J. 420, 129705. doi: 10.1016/j.cej.2021.129705
    Xu, Y.X., Sheng, K.X., Li, C., Shi, G.Q., 2010. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330. doi: 10.1021/nn101187z
    Yao, X.X., Ji, L.L., Guo, J., Ge, S.L., Lu, W.C., Cai, L., Wang, Y.N., Song, W.D., Zhang, H.L., 2020. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour. Technol. 302, 122842. doi: 10.1016/j.biortech.2020.122842
    Yashwanth, H.J., Rondiya, S.R., Dzade, N.Y., Dhole, S.D., Phase, D.M., Hareesh, K., 2020. Enhanced photocatalytic activity of N, P, co-doped carbon quantum dots: an insight from experimental and computational approach. Vacuum 180, 109589. doi: 10.1016/j.vacuum.2020.109589
    Yin, H.H., Yu, K., Song, C.Q., Huang, R., Zhu, Z.Q., 2014. Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity. ACS Appl. Mater. Interfaces 6, 14851–14860. doi: 10.1021/am501549n
    Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., Voon, C.H., 2017. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477. doi: 10.1016/j.proeng.2017.04.118
    Zeng, Z.P., Chen, S.F., Tan, T.T.Y., Xiao, F.X., 2018. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal. Today 315, 171–183. doi: 10.1016/j.cattod.2018.01.005
    Zhang, J., Zhang, X.Y., Dong, S.S., Zhou, X., Dong, S.S., 2016. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J. Photochem. Photobiol. A Chem. 325, 104–110. doi: 10.1016/j.jphotochem.2016.04.012
    Zhao, M., Zhang, J.J., Xiao, H., Hu, T.J., Jia, J.F., Wu, H.S., 2019. Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chem. Commun. 55, 1635–1638. doi: 10.1039/c8cc09368g
    Zhao, X., Li, M., Dong, H.W., Liu, Y.L., Hu, H., Cai, Y.J., Liang, Y.R., Xiao, Y., Zheng, M.T., 2017. Interconnected 3 D network of graphene-oxide nanosheets decorated with carbon dots for high-performance supercapacitors. ChemSusChem 10, 2626–2634. doi: 10.1002/cssc.201700474
    Zheng, C., Huang, L., Guo, Q.H., Chen, W.Z., Li, W., Wang, H.Y., 2018. Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses. RSC Adv. 8, 10267–10276. doi: 10.1039/C8RA00390D
    Zhu, Z.Q., Yang, P., Li, X.H., Luo, M., Zhang, W., Chen, M.Z., Zhou, X.Y., 2020. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochimica Acta A Mol. Biomol. Spectrosc. 227, 117659. doi: 10.1016/j.saa.2019.117659
    Zou, W.X., Gao, B., Ok, Y.S., Dong, L., 2019. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere 218, 845–859. doi: 10.1016/j.chemosphere.2018.11.175
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (865) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return