Citation: | Hesam Salimi Shahraki, Rani Bushra, Nimra Shakeel, Anees Ahmad, Quratulen, Mehraj Ahmad, Christos Ritzoulis. Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: From photocatalytic decomposition of methylene blue to antimicrobial activity[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 162-175. doi: 10.1016/j.jobab.2023.01.009 |
Abidi, N., Duplay, J., Jada, A., Errais, E., Ghazi, M., Semhi, K., Trabelsi-Ayadi, M., 2019. Removal of anionic dye from textile industries' effluents by using Tunisian clays as adsorbents. Ζeta potential and streaming-induced potential measurements. C.R. Chim. 22, 113–125. doi: 10.1016/j.crci.2018.10.006
|
Ahmad, R., Ansari, K., 2020. Chemically treated Lawsonia inermis seeds powder (CTLISP): an eco-friendly adsorbent for the removal of brilliant green dye from aqueous solution. Groundw. Sustain. Dev. 11, 100417. doi: 10.1016/j.gsd.2020.100417
|
Aji, M.P., Wiguna, P.A., Karunawan, J., Wati, A.L., 2017. Removal of heavy metal nickel-ions from wastewaters using carbon nanodots from frying oil. Procedia Eng. 170, 36–40. doi: 10.1016/j.proeng.2017.03.007
|
Ajiboye, T.O., Oyewo, O.A., Onwudiwe, D.C., 2021. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 29, 100277. doi: 10.1016/j.flatc.2021.100277
|
Alarfaj, N.A., El-Tohamy, M.F., Oraby, H.F., 2018. CA 19-9 pancreatic tumor marker fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite. Int. J. Mol. Sci. 19, 1162. doi: 10.3390/ijms19041162
|
Alqadami, A.A., Naushad, M., Alothman, Z.A., Ahamad, T., 2018. Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. J. Environ. Manag. 223, 29–36. doi: 10.1016/j.jenvman.2018.05.090
|
Asadzadeh-Khaneghah, S., Habibi-Yangjeh, A., 2020. G-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J. Clean. Prod. 276, 124319. doi: 10.1016/j.jclepro.2020.124319
|
Ashritha, M.G., Rondiya, S.R., Cross, R.W., Dzade, N.Y., Dhole, S.D., Hareesh, K., Sunitha, D.V., 2021. Experimental and computational studies of sonochemical assisted anchoring of carbon quantum dots on reduced graphene oxide sheets towards the photocatalytic activity. Appl. Surf. Sci. 545, 148962. doi: 10.1016/j.apsusc.2021.148962
|
Bokare, A., Nordlund, D., Melendrez, C., Robinson, R., Keles, O., Wolcott, A., Erogbogbo, F., 2020. Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diam. Relat. Mater. 110, 108101. doi: 10.1016/j.diamond.2020.108101
|
Bushra, R., Arfin, T., Oves, M., Raza, W., Mohammad, F., Alam Khan, M., Ahmad, A., Azam, A., Muneer, M., 2016. Development of PANI/MWCNTs decorated with cobalt oxide nanoparticles towards multiple electrochemical, photocatalytic and biomedical application sites. New J. Chem. 40, 9448–9459. doi: 10.1039/C6NJ02054B
|
Bushra, R., Mohamad, S., Alias, Y., Jin, Y.C., Ahmad, M., 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review. Microporous Mesoporous Mater. 319, 111040. doi: 10.1016/j.micromeso.2021.111040
|
Bushra, R., Shahadat, M., Ahmad, A., Nabi, S.A., Umar, K., Oves, M., Raeissi, A.S., Muneer, M., 2014. Synthesis, characterization, antimicrobial activity and applications of polyanilineTi(Ⅳ)arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 264, 481–489. doi: 10.1016/j.jhazmat.2013.09.044
|
Chen, W.F., Li, D.J., Tian, L., Xiang, W., Wang, T.Y., Hu, W.M., Hu, Y.L., Chen, S.N., Chen, J.F., Dai, Z.X., 2018. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 20, 4438–4442. doi: 10.1039/c8gc02106f
|
Chien, C.T., Li, S.S., Lai, W.J., Yeh, Y.C., Chen, H.A., Chen, I.S., Chen, L.C., Chen, K.H., Nemoto, T., Isoda, S., Chen, M.W., Fujita, T., Eda, G., Yamaguchi, H., Chhowalla, M., Chen, C.W., 2012. Tunable photoluminescence from graphene oxide. Angew. Chem. Int. Ed Engl. 51, 6662–6666. doi: 10.1002/anie.201200474
|
Cui, L., Ren, X., Sun, M.T., Liu, H.Y., Xia, L.X., 2021. Carbon dots: synthesis, properties and applications. Nanomaterials (Basel) 11, 3419. doi: 10.3390/nano11123419
|
Dang, X.M., Zhao, H.M., Wang, X.N., Sailijiang, T., Chen, S., Quan, X., 2018. Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim. Acta 185, 345. doi: 10.1007/s00604-018-2877-4
|
Das, G.S., Shim, J.P., Bhatnagar, A., Tripathi, K.M., Kim, T., 2019. Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(Ⅲ) and ascorbic acid. Sci. Rep. 9, 15084. doi: 10.1038/s41598-019-49266-y
|
Das, P., Maruthapandi, M., Saravanan, A., Natan, M., Jacobi, G., Banin, E., Gedanken, A., 2020. Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl. Nano Mater. 3, 11777–11790. doi: 10.1021/acsanm.0c02305
|
De Oliveira, B.P., Da Silva Abreu, F.O.M., 2021. Carbon quantum dots synthesis from waste and by-products: perspectives and challenges. Mater. Lett. 282, 128764. doi: 10.1016/j.matlet.2020.128764
|
Dong, X.L., Awak, M.A., Tomlinson, N., Tang, Y.A., Sun, Y.P., Yang, L.J., 2017. Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One 12, e0185324. doi: 10.1371/journal.pone.0185324
|
Emam, A.N., Loutfy, S.A., Mostafa, A.A., Awad, H., Mohamed, M.B., 2017. Cyto-toxicity, biocompatibility and cellular response of carbon dots "plasmonic based nano-hybrids for bioimaging. RSC Adv. 7, 23502–23514. doi: 10.1039/C7RA01423F
|
Exner, M., Bhattacharya, S., Christiansen, B., Gebel, J., Goroncy-Bermes, P., Hartemann, P., Heeg, P., Ilschner, C., Kramer, A., Larson, E., Merkens, W., Mielke, M., Oltmanns, P., Ross, B., Rotter, M., Schmithausen, R.M., Sonntag, H.G., Trautmann, M., 2017. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 12, Doc05.
|
Facure, M.H.M., Schneider, R., Lima, J.B.S., Mercante, L.A., Correa, D.S., 2021. Graphene quantum dots-based nanocomposites applied in electrochemical sensors: a recent survey. Electrochem 2, 490–519. doi: 10.3390/electrochem2030032
|
Fadllan, A., Marwoto, P., Aji, M.P., Susanto, Iswari, R.S., 2017. Synthesis of carbon nanodots from waste paper with hydrothermal method. AIP Conf. Proc. 1788, 030069. doi: 10.1063/1.4968322
|
Fan, J.X., Li, D.H., Wang, X.M., 2016. Effect of modified graphene quantum dots on photocatalytic degradation property. Diam. Relat. Mater. 69, 81–85. doi: 10.1016/j.diamond.2016.07.008
|
Ghirardello, M., Ramos-Soriano, J., Galan, M.C., 2021. Carbon dots as an emergent class of antimicrobial agents. Nanomaterials (Basel) 11, 1877. doi: 10.3390/nano11081877
|
Gudimella, K.K., Gedda, G., Kumar, P.S., Babu, B.K., Yamajala, B., Rao, B.V., Singh, P.P., Kumar, D., Sharma, A., 2022. Novel synthesis of fluorescent carbon dots from bio-based Carica papaya Leaves: optical and structural properties with antioxidant and anti-inflammatory activities. Environ. Res. 204, 111854. doi: 10.1016/j.envres.2021.111854
|
Hareesh K., Joshi, R.P., Sunitha, DV., Bhoraskar, V.N., Dhole, S.D., 2016. Anchoring of Ag-Au alloy nanoparticles on reduced graphene oxide sheets for the reduction of 4-nitrophenol. Appl. Surf. Sci. 389, 1050–1055. doi: 10.1016/j.apsusc.2016.08.034
|
Heng, Z.W., Chong, W.C., Pang, Y.L., Sim, L.C., Koo, C.H., 2022. Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation. Chin. J. Chem. Eng. 51, 21–34. doi: 10.1016/j.cjche.2021.10.021
|
Hoang, V.C., Nguyen, L.H., Gomes, V.G., 2019. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. J. Electroanal. Chem. 832, 87–96. doi: 10.1016/j.jelechem.2018.10.050
|
Jain, A., Duvvuri, L.S., Farah, S., Beyth, N., Domb, A.J., Khan, W., 2014. Antimicrobial polymers. Adv. Healthc. Mater. 3, 1969–1985. doi: 10.1002/adhm.201400418
|
Jin, Y.L., Tang, W.W., Wang, J.Y., Ren, F., Chen, Z.Y., Sun, Z.F., Ren, P.G., 2023. Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation. J. Alloys Compd. 932, 167627. doi: 10.1016/j.jallcom.2022.167627
|
Kang, C., Huang, Y., Yang, H., Yan, X.F., Chen, Z.P., 2020. A review of carbon dots produced from biomass wastes. Nanomaterials (Basel) 10, 2316. doi: 10.3390/nano10112316
|
Katheresan, V., Kansedo, J., Lau, S.Y., 2018. Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697. doi: 10.1016/j.jece.2018.06.060
|
Krishnaiah, P., Atchudan, R., Perumal, S., Salama, E.S., Lee, Y.R., Jeon, B.H., 2022. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 286, 131764. doi: 10.1016/j.chemosphere.2021.131764
|
Krishni, R.R., Foo, K.Y., Hameed, B.H., 2014. Adsorption of methylene blue onto papaya leaves: comparison of linear and nonlinear isotherm analysis. Desalin. Water Treat. 52, 6712–6719. doi: 10.1080/19443994.2013.827818
|
Ławkowska, K., Pokrywczyńska, M., Koper, K., Kluth, L.A., Drewa, T., Adamowicz, J., 2021. Application of graphene in tissue engineering of the nervous system. Int. J. Mol. Sci. 23, 33. doi: 10.3390/ijms23010033
|
Li, H.T., He, X.D., Kang, Z.H., Huang, H., Liu, Y., Liu, J.L., Lian, S.Y., Tsang, C.H.A., Yang, X.B., Lee, S.T., 2010. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed Engl. 49, 4430–4434. doi: 10.1002/anie.200906154
|
Li, J.Y., Yun, X.R., Hu, Z.L., Xi, L.J., Li, N., Tang, H., Lu, P.C., Zhu, Y.R., 2019a. Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 7, 26311–26325. doi: 10.1039/c9ta08151h
|
Li, L.X., Wang, J., Jia, C., Lv, Y., Liu, Y., 2021. Co-pyrolysis of cyanobacteria and plastics to synthesize porous carbon and its application in methylene blue adsorption. J. Water Process. Eng. 39, 101753. doi: 10.1016/j.jwpe.2020.101753
|
Li, Y.H., Liu, F.J., Cai, J.B., Huang, X.G., Lin, L.X., Lin, Y., Yang, H., Li, S.X., 2019b. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchem. J. 147, 1038–1047. doi: 10.1016/j.microc.2019.04.015
|
Li, Y.J., Harroun, S.G., Su, Y.C., Huang, C.F., Unnikrishnan, B., Lin, H.J., Lin, C.H., Huang, C.C., 2016. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv. Healthc. Mater. 5, 2545–2554. doi: 10.1002/adhm.201600297
|
Lightcap, I.V., Kosel, T.H., Kamat, P.V., 2010. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 10, 577–583. doi: 10.1021/nl9035109
|
Ma, C.L., Peng, L., Feng, Y.F., Shen, J.X., Xiao, Z.Q., Cai, K.Y., Yu, Y.H., Min, Y., Epstein, A.J., 2016. Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application. Synth. Met. 220, 227–235. doi: 10.1016/j.synthmet.2016.06.008
|
Ma, H.F., He, J.L., Li, Z.Y., Dong, L.M., Guo, S.Z., Zhu, X.X., Li, D., Zang, L.H., Shi, L.L., Ba, T.E., 2022. Lignin-derived carbon quantum dots/Ni-MOL heterojunction from red phosphorus-assisted ball milling pretreatment and their application in photocatalysis: an insight from experiment and DFT calculation. Ind. Crops Prod. 189, 115829. doi: 10.1016/j.indcrop.2022.115829
|
Maddu, A., Meliafatmah, R., Rustami, E., 2020. Enhancing photocatalytic degradationof methylene blue using ZnO/carbon dots nanocomposite derived from coffee grounds. Pol. J. Environ. Stud. 30, 273–282. doi: 10.15244/pjoes/120156
|
Malik, W.A., Javed, S., 2021. Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Front. Bioeng. Biotechnol. 9, 800265. doi: 10.3389/fbioe.2021.800265
|
Miller, S.I., 2016. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. mBio 7, e01541–e01516.
|
Phang, S.J., Tan, L.L., 2019. Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catal. Sci. Technol. 9, 5882–5905. doi: 10.1039/c9cy01452g
|
Quan, B., Liu, W., Liu, Y.S., Zheng, Y., Yang, G.C., Ji, G.B., 2016. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties. J. Colloid Interface Sci. 481, 13–19. doi: 10.1016/j.jcis.2016.07.037
|
Reza, K.M., Kurny, A.S. W, Gulshan, F., 2017. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 7, 1569–1578. doi: 10.1007/s13201-015-0367-y
|
Salimi Shahraki, H., Ahmad, A., Bushra, R., 2022. Green carbon dots with multifaceted applications- Waste to wealth strategy. FlatChem 31, 100310. doi: 10.1016/j.flatc.2021.100310
|
Shahid, M.M., Rameshkumar, P., Basirun, W.J., Juan, J.C., Huang, N.M., 2017. Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochim. Acta 237, 61–68. doi: 10.1016/j.electacta.2017.03.088
|
Sharma, A., Gadly, T., Gupta, A., Ballal, A., Ghosh, S.K., Kumbhakar, M., 2016. Origin of excitation dependent fluorescence in carbon nanodots. J. Phys. Chem. Lett. 7, 3695–3702. doi: 10.1021/acs.jpclett.6b01791
|
Silas, K., Ab Karim Ghani, W.A.W., Choong, T.S.Y., Rashid, U., 2020. Optimization of activated carbon monolith Co3O4-based catalyst for simultaneous SO2/NOx removal from flue gas using response surface methodology. Combust. Sci. Technol. 192, 786–803. doi: 10.1080/00102202.2019.1594797
|
Simonin, J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300, 254–263. doi: 10.1016/j.cej.2016.04.079
|
Singha, K., Pandit, P., Maity, S., Sharma, S.R., 2021. Harmful environmental effects for textile chemical dyeing practice. Green Chemistry for Sustainable Textiles. Amsterdam: Elsevier, 153–164.
|
Smith, A.T., LaChance, A.M., Zeng, S.S., Liu, B., Sun, L.Y., 2019. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1, 31–47. doi: 10.1016/j.nanoms.2019.02.004
|
Thambiraj S., Ravi Shankaran, D., 2016. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci. 390, 435–443. doi: 10.1016/j.apsusc.2016.08.106
|
Vu Nu, T.T., Thi Tran, N.H., Truong, P.L., Phan, B.T., Nguyen Dinh, M.T., Dinh, V.P., Phan, T.S., Go, S., Chang, M., Loan Trinh, K.T., Van Tran, V., 2022. Green synthesis of microalgae-based carbon dots for decoration of TiO2 nanoparticles in enhancement of organic dye photodegradation. Environ. Res. 206, 112631. doi: 10.1016/j.envres.2021.112631
|
Wang, N., Wang, Y.T., Guo, T.T., Yang, T., Chen, M.L., Wang, J.H., 2016. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (Ⅲ) and Escherichia coli. Biosens. Bioelectron. 85, 68–75. doi: 10.1016/j.bios.2016.04.089
|
Wang, X.X., Li, L.Y., Fu, Z., Cui, F.L., 2018. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance. J. Mol. Liq. 268, 578–586. doi: 10.1016/j.molliq.2018.07.086
|
Wu, L.J., Liu, X.W., Lv, G.C., Zhu, R.L., Tian, L.T., Liu, M., Li, Y.X., Rao, W.X., Liu, T.M., Liao, L.B., 2021. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci. Rep. 11, 10640. doi: 10.1038/s41598-021-90235-1
|
Xie, X.Y., Li, S., Qi, K.M., Wang, Z.W., 2021. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: the role of selectively more CQDs decoration and Z-scheme structure. Chem. Eng. J. 420, 129705. doi: 10.1016/j.cej.2021.129705
|
Xu, Y.X., Sheng, K.X., Li, C., Shi, G.Q., 2010. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330. doi: 10.1021/nn101187z
|
Yao, X.X., Ji, L.L., Guo, J., Ge, S.L., Lu, W.C., Cai, L., Wang, Y.N., Song, W.D., Zhang, H.L., 2020. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour. Technol. 302, 122842. doi: 10.1016/j.biortech.2020.122842
|
Yashwanth, H.J., Rondiya, S.R., Dzade, N.Y., Dhole, S.D., Phase, D.M., Hareesh, K., 2020. Enhanced photocatalytic activity of N, P, co-doped carbon quantum dots: an insight from experimental and computational approach. Vacuum 180, 109589. doi: 10.1016/j.vacuum.2020.109589
|
Yin, H.H., Yu, K., Song, C.Q., Huang, R., Zhu, Z.Q., 2014. Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity. ACS Appl. Mater. Interfaces 6, 14851–14860. doi: 10.1021/am501549n
|
Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., Voon, C.H., 2017. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477. doi: 10.1016/j.proeng.2017.04.118
|
Zeng, Z.P., Chen, S.F., Tan, T.T.Y., Xiao, F.X., 2018. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal. Today 315, 171–183. doi: 10.1016/j.cattod.2018.01.005
|
Zhang, J., Zhang, X.Y., Dong, S.S., Zhou, X., Dong, S.S., 2016. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J. Photochem. Photobiol. A Chem. 325, 104–110. doi: 10.1016/j.jphotochem.2016.04.012
|
Zhao, M., Zhang, J.J., Xiao, H., Hu, T.J., Jia, J.F., Wu, H.S., 2019. Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chem. Commun. 55, 1635–1638. doi: 10.1039/c8cc09368g
|
Zhao, X., Li, M., Dong, H.W., Liu, Y.L., Hu, H., Cai, Y.J., Liang, Y.R., Xiao, Y., Zheng, M.T., 2017. Interconnected 3 D network of graphene-oxide nanosheets decorated with carbon dots for high-performance supercapacitors. ChemSusChem 10, 2626–2634. doi: 10.1002/cssc.201700474
|
Zheng, C., Huang, L., Guo, Q.H., Chen, W.Z., Li, W., Wang, H.Y., 2018. Facile one-step fabrication of upconversion fluorescence carbon quantum dots anchored on graphene with enhanced nonlinear optical responses. RSC Adv. 8, 10267–10276. doi: 10.1039/C8RA00390D
|
Zhu, Z.Q., Yang, P., Li, X.H., Luo, M., Zhang, W., Chen, M.Z., Zhou, X.Y., 2020. Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochimica Acta A Mol. Biomol. Spectrosc. 227, 117659. doi: 10.1016/j.saa.2019.117659
|
Zou, W.X., Gao, B., Ok, Y.S., Dong, L., 2019. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review. Chemosphere 218, 845–859. doi: 10.1016/j.chemosphere.2018.11.175
|