Citation: | Adrian Chun Minh Loy, Karen Gah Hie Kong, Juin Yau Lim, Bing Shen How. Frontier of digitalization in Biomass-to-X supply chain: opportunity or threats?[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 101-107. doi: 10.1016/j.jobab.2023.03.001 |
Ahmed, M.U., Andersson, P., Andersson, T., Aparicio, E.T., Baaz, H., Barua, S., Bergström, A., Bengtsson, D., Orisio, D., Skvaril, J., Zambrano, J., 2019. A machine learning approach for biomass characterization. Energy Procedia 158, 1279–1287. doi: 10.1016/j.egypro.2019.01.316
|
Akartuna, E.A., Johnson, S.D., Thornton, A.E., 2022. The money laundering and terrorist financing risks of new and disruptive technologies: a futures-oriented scoping review. Secur. J. 1–36.
|
Alawida, M., Omolara, A.E., Abiodun, O.I., Al-Rajab, M., 2022. A deeper look into cybersecurity issues in the wake of Covid-19: a survey. J. King Saud Univ. Comput. Inf. Sci. 34, 8176–8206.
|
Allen, J.W., Scheer, A.M., Gao, C.W., Merchant, S.S., Vasu, S.S., Welz, O., Savee, J.D., Osborn, D.L., Lee, C., Vranckx, S., Wang, Z.D., Qi, F., Fernandes, R.X., Green, W.H., Hadi, M.Z., Taatjes, C.A., 2014. A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi. Combust. Flame 161, 711–724. doi: 10.1016/j.combustflame.2013.10.019
|
Ancillai, C., Sabatini, A., Gatti, M., Perna, A., 2023. Digital technology and business model innovation: a systematic literature review and future research agenda. Technol. Forecast. Soc. Change 188, 122307. doi: 10.1016/j.techfore.2022.122307
|
Andiappan, V., How, B.S., Ngan, S.L., 2021. A perspective on post-pandemic biomass supply chains: opportunities and challenges for the new norm. Process. Integr. Optim. Sustain. 5, 1003–1010. doi: 10.1007/s41660-021-00176-5
|
Ariede, M.B., Candido, T.M., Jacome, A.L.M., Velasco, M.V.R., de Carvalho, J.C.M., Baby, A.R., 2017. Cosmetic attributes of algae - a review. Algal Res. 25, 483–487. doi: 10.1016/j.algal.2017.05.019
|
BBTwins, 2022. Agri-food Value Chain Digitalisation for Resource Efficiency Retrieved. Available at:
|
Bethesada, M., Reno, N., 2020. Enviva Partners With GoChain to Pilot Blockchain echnology for Sustainable Biomass. Available at:
|
Biswas, D., Jalali, H., Ansaripoor, A.H., De Giovanni, P., 2023. Traceability vs. sustainability in supply chains: the implications of blockchain. Eur. J. Oper. Res. 305, 128–147. doi: 10.1016/j.ejor.2022.05.034
|
Borowski, P., 2021. Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector. Energies 14, 1885. doi: 10.3390/en14071885
|
Bracco, S., Calicioglu, O., Gomez San Juan, M., Flammini, A., 2018. Assessing the contribution of bioeconomy to the total economy: a review of national frameworks. Sustainability 10, 1698. doi: 10.3390/su10061698
|
Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M., 2018. How blockchain improves the supply chain: case study alimentary supply chain. Procedia Comput. Sci. 134, 393–398. doi: 10.1016/j.procs.2018.07.193
|
Castro Garcia, A., Shuo, C., Cross, J.S., 2022. Machine learning based analysis of reaction phenomena in catalytic lignin depolymerization. Bioresour. Technol. 345, 126503. doi: 10.1016/j.biortech.2021.126503
|
Chai, S.Y.W., Phang, F.J.F., Yeo, L.S., Ngu, L.H., How, B.S., 2022. Future era of techno-economic analysis: insights from review. Front. Sustain. 3, 924047. doi: 10.3389/frsus.2022.924047
|
Chandrasekaran, A., Kim, C., Venkatram, S., Ramprasad, R., 2020. A deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent database for polymers. Macromolecules 53, 4764–4769. doi: 10.1021/acs.macromol.0c00251
|
Chen, X., Despeisse, M., Johansson, B., 2020. Environmental sustainability of digitalization in manufacturing: a review. Sustainability 12, 10298. doi: 10.3390/su122410298
|
Dwivedi, Y.K., Ismagilova, E., Hughes, D.L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A.S., Kumar, V., Rahman, M.M., Raman, R., Rauschnabel, P.A., Rowley, J., Salo, J., Tran, G.A., Wang, Y.C., 2021. Setting the future of digital and social media marketing research: perspectives and research propositions. Int. J. Inf. Manag. 59, 102168. doi: 10.1016/j.ijinfomgt.2020.102168
|
Dyck, G., Hawley, E., Hildebrand, K., Paliwal, J., 2023. Digital Twins: a novel traceability concept for post-harvest handling. Smart Agric. Technol. 3, 100079. doi: 10.1016/j.atech.2022.100079
|
Elmaz, F., Yücel, Ö., Mutlu, A.Y., 2020. Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 191, 116541. doi: 10.1016/j.energy.2019.116541
|
Fava, F., Gardossi, L., Brigidi, P., Morone, P., Carosi, D.A.R., Lenzi, A., 2021. The bioeconomy in Italy and the new national strategy for a more competitive and sustainable country. New Biotechnol. 61, 124–136. doi: 10.1016/j.nbt.2020.11.009
|
Gao, C.W., Allen, J.W., Green, W.H., West, R.H., 2016. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun. 203, 212–225. doi: 10.1016/j.cpc.2016.02.013
|
García Nieto, P.J., García-Gonzalo, E., Paredes-Sánchez, J.P., Sánchez, A.B., Fernández, M.M., 2019. Predictive modelling of the higher heating value in biomass torrefaction for the energy treatment process using machine-learning techniques. Neural Comput. Appl. 31, 8823–8836. doi: 10.1007/s00521-018-3870-x
|
Ghobakhloo, M., Fathi, M., 2021. Industry 4.0 and opportunities for energy sustainability. J. Clean. Prod. 295, 126427. doi: 10.1016/j.jclepro.2021.126427
|
Globacap, 2022. Asset-Backed Token Raise to Support the Build of Algae Biomass Protein Farms. Available at:
|
Goswami, L., Kayalvizhi, R., Dikshit, P.K., Sherpa, K.C., Roy, S., Kushwaha, A., Kim, B.S., Banerjee, R., Jacob, S., Rajak, R.C., 2022. A critical review on prospects of bio-refinery products from second and third generation biomasses. Chem. Eng. J. 448, 137677. doi: 10.1016/j.cej.2022.137677
|
Hosamo, H.H., Svennevig, P.R., Svidt, K., Han, D.G., Nielsen, H.K., 2022. A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy Build. 261, 111988. doi: 10.1016/j.enbuild.2022.111988
|
IEA, 2019. Governing Sustainability in Biomass Supply Chains for The Bioeconomy. Available at:
|
Iqbal, J., Muhammad, N., Rahim, A., Khan, A.S., Ullah, Z., Gonfa, G., Ahmad, P., 2019. COSMO-RS predictions, hydrogen bond basicity values and experimental evaluation of amino acid-based ionic liquids for lignocellulosic biomass dissolution. J. Mol. Liq. 273, 215–221. doi: 10.1016/j.molliq.2018.10.044
|
Javed, H., Irfan, M., Shehzad, M., Abdul Muqeet, H., Akhter, J., Dagar, V., Guerrero, J.M., 2022. Recent trends, challenges, and future aspects of P2P energy trading platforms in electrical-based networks considering blockchain technology: a roadmap toward environmental sustainability. Front. Energy Res. 10, 810395. doi: 10.3389/fenrg.2022.810395
|
Kankaanhuhta, V., Packalen, T., Väätäinen, K., 2021. Digital transformation of forest services in Finland—a case study for improving business processes. Forests 12, 781. doi: 10.3390/f12060781
|
Karantias, K., Kiayias, A., Zindros, D., 2020. Proof-of-Burn. In: International Conference on Financial Cryptography and Data Security. Springer, Cham, pp. 523–540.
|
Kardung, M., Cingiz, K., Costenoble, O., Delahaye, R., Heijman, W., Lovrić, M., Zhu, B.X., 2021. Development of the circular bioeconomy: drivers and indicators. Sustainability 13, 413. doi: 10.3390/su13010413
|
Khandii, O., 2019. Social threats in the digitalization of economy and society. In: SHS Web Conf, 67, p. 06023.
|
Kohli, V., Chakravarty, S., Chamola, V., Sangwan, K.S., Zeadally, S., 2022. An analysis of energy consumption and carbon footprints of cryptocurrencies and possible solutions. Digit. Commun. Netw. doi: 10.1016/j.dcan.2022.06.017.
|
Kohtamäki, M., Parida, V., Patel, P.C., Gebauer, H., 2020. The relationship between digitalization and servitization: the role of servitization in capturing the financial potential of digitalization. Technol. Forecast. Soc. Change 151, 119804. doi: 10.1016/j.techfore.2019.119804
|
Kong, K.G.H., How, B.S., Teng, S.Y., Leong, W.D., Foo, D.C., Tan, R.R., Sunarso, J., 2021. Towards data-driven process integration for renewable energy planning. Curr. Opin. Chem. Eng. 31, 100665. doi: 10.1016/j.coche.2020.100665
|
Kong, K.G.H., Lim, J.Y., Leong, W.D., Ng, W.P.Q., Teng, S.Y., Sunarso, J., How, B.S., 2022. Fuzzy optimization for peer-to-peer (P2P) multi-period renewable energy trading planning. J. Clean. Prod. 368, 133122. doi: 10.1016/j.jclepro.2022.133122
|
Lago, C., Herrera, I., Caldés, N., Lechón, Y., 2019. Nexus bioenergy-bioeconomy. In: The Role of Bioenergy in the Bioeconomy. Elsevier, Amsterdam, pp. 3–24.
|
Lilienthal, P., Lambert, T., Gilman, P., 2004. Computer modeling of renewable power systems. Encyclopedia of Energy. Elsevier, Amsterdam, pp. 633–647.
|
Lim, J.Y., Loy, A.C.M., Alhazmi, H., Fui, B.C.L., Cheah, K.W., Taylor, M.J., Kyriakou, G., Yoo, C.K., 2022. Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: reaction pathways and multicriteria optimization analyses. Int. J. Energy Res. 46, 6277–6291. doi: 10.1002/er.7565
|
Loy, A.C.M., Gan, D.K.W., Yusup, S., Chin, B.L.F., Lam, M.K., Shahbaz, M., Unrean, P., Acda, M.N., Rianawati, E., 2018. Thermogravimetric kinetic modelling of in situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresour. Technol. 261, 213–222. doi: 10.1016/j.biortech.2018.04.020
|
Loy, A.C.M., Lim, J.Y., How, B.S., Yoo, C.K., 2022. Blockchain as a frontier in biotechnology and bioenergy applications. Trends Biotechnol. 40, 255–258. doi: 10.1016/j.tibtech.2021.09.006
|
Mohammed, A., de Sousa Jabbour, A.B.L., Koh, L., Hubbard, N., Chiappetta Jabbour, C.J., Al Ahmed, T., 2022. The sourcing decision-making process in the era of digitalization: a new quantitative methodology. Transp. Res. E Logist. Transp. Rev. 168, 102948. doi: 10.1016/j.tre.2022.102948
|
Nehme, F., 2018. Opinion: How Blockchain and Digital Coins Can Serve the Biofuels Industry. Available at:
|
Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz, E., 2019. Proof-of-stake consensus mechanisms for future blockchain networks: fundamentals, applications and opportunities. IEEE Access 7, 85727–85745. doi: 10.1109/access.2019.2925010
|
Njualem, L.A., 2022. Leveraging blockchain technology in supply chain sustainability: a provenance perspective. Sustainability 14, 10533. doi: 10.3390/su141710533
|
Phromphithak, S., Onsree, T., Tippayawong, N., 2021. Machine learning prediction of cellulose-rich materials from biomass pretreatment with ionic liquid solvents. Bioresour. Technol. 323, 124642. doi: 10.1016/j.biortech.2020.124642
|
Psathas, F., Georgiou, P.N., Rentizelas, A., 2022. Optimizing the design of a biomass-to-biofuel supply chain network using a decentralized processing approach. Energies 15, 5001. doi: 10.3390/en15145001
|
Rachinger, M., Rauter, R., Müller, C., Vorraber, W., Schirgi, E., 2019. Digitalization and its influence on business model innovation. J. Manuf. Technol. Manag. 30, 1143–1160. doi: 10.1108/jmtm-01-2018-0020
|
Rennings, M., Burgsmüller, A.P.F., Bröring, S., 2022. Convergence towards a digitalized bioeconomy—exploring cross-industry merger and acquisition activities between the bioeconomy and the digital economy. Bus. Strategy Dev. doi: 10.1002/bsd2.223.
|
Ronzhina, N., Kondyurina, I., Voronina, A., Igishev, K., Loginova, N., 2021. Digitalization of modern education: problems and solutions. Int. J. Emerg. Technol. Learn. 16, 122. doi: 10.3991/ijet.v16i04.18203
|
RSB, 2021. Combatting Fraud with Technology: RSB and Bioledger Launch Biofuels Blockchain Case Study. Available at:
|
Sandalow, D., Aines, R., Friedmann, J., McCormick, C., Sanchez, D.L., 2021. Biomass Carbon Removal and Storage (BiCRS) Roadmap. Available at:
|
Seyedzadeh Khanshan, F., West, R.H., 2016. Developing detailed kinetic models of syngas production from bio-oil gasification using reaction mechanism generator (RMG). Fuel 163, 25–33. doi: 10.1016/j.fuel.2015.09.031
|
Solomon, E.M., van Klyton, A., 2020. The impact of digital technology usage on economic growth in Africa. Util. Policy 67, 101104. doi: 10.1016/j.jup.2020.101104
|
Teng, S.Y., Touš, M., Leong, W.D., How, B.S., Lam, H.L., Máša, V., 2021. Recent advances on industrial data-driven energy savings: digital twins and infrastructures. Renew. Sustain. Energy Rev. 135, 110208. doi: 10.1016/j.rser.2020.110208
|
Terry, L.M., Loy, A.C.M., Chew, J.J., How, B.S., Andiappan, V., Sunarso, J., 2022. Chemical engineering and the sustainable oil palm biomass industry—Recent advances and perspectives for the future. Chem. Eng. Res. Des. 188, 729–735. doi: 10.1016/j.cherd.2022.10.017
|
Toorajipour, R., Oghazi, P., Sohrabpour, V., Patel, P.C., Mostaghel, R., 2022. Block by block: a blockchain-based peer-to-peer business transaction for international trade. Technol. Forecast. Soc. Change 180, 121714. doi: 10.1016/j.techfore.2022.121714
|
Varadhan, S., Reidm, H., Dausen, N., Saul, J., Chestney, N., 2022. Coal Rush! Energy Crisis Fires Global Hunt for Polluting Fuel. Available at:
|
V-Grid, 2021. VGRID Energy Systems Finds Solution to Make Bitcoin Mining Go Green. Available at:
|
Wang, K.X., Khoo, K.S., Leong, H.Y., Nagarajan, D., Chew, K.W., Ting, H.Y., Selvarajoo, A., Chang, J.S., Show, P.L., 2022. How does the internet of things (IoT) help in microalgae biorefinery? Biotechnol. Adv. 54, 107819. doi: 10.1016/j.biotechadv.2021.107819
|
Wesseler, J., von Braun, J., 2017. Measuring the bioeconomy: economics and policies. Annu. Rev. Resour. Econ. 9, 275–298. doi: 10.1146/annurev-resource-100516-053701
|
Wongthongtham, P., Marrable, D., Abu-Salih, B., Liu, X., Morrison, G., 2021. Blockchain-enabled Peer-to-Peer energy trading. Comput. Electr. Eng. 94, 107299. doi: 10.1016/j.compeleceng.2021.107299
|
Yi, H.B., 2022. A traceability method of biofuel production and utilization based on blockchain. Fuel 310, 122350. doi: 10.1016/j.fuel.2021.122350
|
You, X.D., Sun, D.W., Lv, X.Q., Gao, S., Buyya, R., 2022. MQDS: an energy saving scheduling strategy with diverse QoS constraints towards reconfigurable cloud storage systems. Future Gener. Comput. Syst. 129, 252–268. doi: 10.1016/j.future.2021.11.025
|
Youssef Abdelmajied, F., 2022. Industry 4.0 and its implications: concept, opportunities, and future directions. In: Tamás, B., Ágota, B., Ireneusz, K. (Eds.), Supply Chain: Recent Advances and New Perspectives in the Industry 4.0 Era. IntechOpen, Rijeka.
|
Zhang, A., Zhong, R.Y., Farooque, M., Kang, K., Venkatesh, V.G., 2020. Blockchain-based life cycle assessment: an implementation framework and system architecture. Resour. Conserv. Recycl. 152, 104512. doi: 10.1016/j.resconrec.2019.104512
|
Zhang, S.C., Dong, H., Lin, A., Zhang, C.F., Du, H., Mu, J.J., Han, J.Y., Zhang, J., Wang, F., 2022a. Design and optimization of solid amine CO2 adsorbents assisted by machine learning. ACS Sustain. Chem. Eng. 10, 13185–13193. doi: 10.1021/acssuschemeng.2c04492
|
Zhang, Y., Su, J.F., Guo, H.G., Lee, J.Y., Xiao, Y., Fu, M.Q., 2022b. Transformative value co-creation with older customers in e-services: exploring the influence of customer participation on appreciation of digital affordances and well-being. J. Retail. Consumer Serv. 67, 103022. doi: 10.1016/j.jretconser.2022.103022
|