Citation: | Eriola Betiku, Ebenezer O Olatoye, Lekan M. Latinwo. Bioprocessing of underutilized Artocarpus altilis fruit to bioethanol by Saccharomyces cerevisiae: A fermentation condition improvement study[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 125-135. doi: 10.1016/j.jobab.2023.03.002 |
Amini Sarteshnizi, R., Hosseini, H., Bondarianzadeh, D., Colmenero, F.J., Khaksar, R., 2015. Optimization of prebiotic sausage formulation: effect of using β-glucan and resistant starch by D-optimal mixture design approach. LWT Food Sci. Technol. 62, 704–710. doi: 10.1016/j.lwt.2014.05.014
|
Betiku, E., Ajala, O., 2010. Enzymatic hydrolysis of breadfruit starch: case study with utilization for gluconic acid production. Ife Journal of Technology 19, 10–14.
|
Betiku, E., Alade, O.S., 2014. Media evaluation of bioethanol production from cassava starch hydrolysate using Saccharomyces cerevisiae. Energy Sources A Recovery Util. Environ. Eff. 36, 1990–1998. doi: 10.1080/15567036.2011.557690
|
Betiku, E., Odude, V.O., Ishola, N.B., Bamimore, A., Osunleke, A.S., Okeleye, A.A., 2016. Predictive capability evaluation of RSM, ANFIS and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process. Energy Convers. Manag. 124, 219–230. doi: 10.1016/j.enconman.2016.07.030
|
Betiku, E., Taiwo, A.E., 2015. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew. Energy 74, 87–94. doi: 10.1016/j.renene.2014.07.054
|
Bhuyar, P., Trejo, M., Mishra, P., Unpaprom, Y., Velu, G., Ramaraj, R., 2022. Advancements of fermentable sugar yield by pretreatment and steam explosion during enzymatic saccharification of Amorphophallus sp. starchy tuber for bioethanol production. Fuel 323, 124406. doi: 10.1016/j.fuel.2022.124406
|
Castro, E., Nieves, I.U., Rondón, V., Sagues, W.J., Fernández-Sandoval, M.T., Yomano, L.P., York, S.W., Erickson, J., Vermerris, W., 2017. Potential for ethanol production from different sorghum cultivars. Ind. Crops Prod. 109, 367–373. doi: 10.1016/j.indcrop.2017.08.050
|
Chaudhary, A., Hussain, Z., Aihetasham, A., El-Sharnouby, M., Abdul Rehman, R., Azmat Ullah Khan, M., Zahra, S., Saleem, A., Azhar, S., Alhazmi, A., El Askary, A., Sayed, S., Ali El Enshasy, H., Zulaiha Hanapi, S., Qamer, S., 2021. Pomegranate peels waste hydrolyzate optimization by Response Surface Methodology for Bioethanol production. Saudi J. Biol. Sci. 28, 4867–4875. doi: 10.1016/j.sjbs.2021.06.081
|
Chouaibi, M., Ben Daoued, K., Riguane, K., Rouissi, T., Ferrari, G., 2020. Production of bioethanol from pumpkin peel wastes: comparison between response surface methodology (RSM) and artificial neural networks (ANN). Ind. Crops Prod. 155, 112822. doi: 10.1016/j.indcrop.2020.112822
|
Dave, N., Varadavenkatesan, T., Selvaraj, R., Vinayagam, R., 2021. Modelling of fermentative bioethanol production from indigenous Ulva prolifera biomass by Saccharomyces cerevisiae NFCCI1248 using an integrated ANN-GA approach. Sci. Total Environ. 791, 148429. doi: 10.1016/j.scitotenv.2021.148429
|
Demiray, E., Karatay, S.E., Dönmez, G., 2018. Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy 159, 988–994. doi: 10.1016/j.energy.2018.06.200
|
Falowo, O.A., Oloko-Oba, M.I., Betiku, E., 2019. Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree pod husk as a base heterogeneous catalyst. Chem. Eng. Process. Process. Intensif. 140, 157–170. doi: 10.1016/j.cep.2019.04.010
|
Farias, D., Maugeri-Filho, F., 2021. Sequential fed batch extractive fermentation for enhanced bioethanol production using recycled Spathaspora passalidarum and mixed sugar composition. Fuel 288, 119673. doi: 10.1016/j.fuel.2020.119673
|
González-Mendoza, M.E., Martínez-Bustos, F., Castaño-Tostado, E., Amaya-Llano, S.L., 2022. Effect of microwave irradiation on acid hydrolysis of faba bean starch: physicochemical changes of the starch granules. Molecules 27, 3528. doi: 10.3390/molecules27113528
|
Guan, X., Yao, H.Y., 2008. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem 106, 345–351. doi: 10.1016/j.foodchem.2007.05.041
|
Gunst, R.F., Myers, R.H., Montgomery, D.C., 1996. Response surface methodology: process and product optimization using designed experiments. Technometrics 38, 285. doi: 10.2307/1270613
|
Hashem, M., Alamri, S.A., Asseri, T.A.Y., Mostafa, Y.S., Lyberatos, G., Ntaikou, I., 2021. On the optimization of fermentation conditions for enhanced bioethanol yields from starchy biowaste via yeast co-cultures. Sustainability 13, 1890. doi: 10.3390/su13041890
|
Hermiati, E., Azuma, J.I., Tsubaki, S., Mangunwidjaja, D., Sunarti, T.C., Suparno, O., Prasetya, B., 2012. Improvement of microwave-assisted hydrolysis of cassava pulp and tapioca flour by addition of activated carbon. Carbohydr. Polym. 87, 939–942. doi: 10.1016/j.carbpol.2011.08.033
|
Hernández-Mendoza, A.G., Saldaña-Trinidad, S., Martínez-Hernández, S., Pérez-Sariñana, B.Y., Láinez, M., 2021. Optimization of alkaline pretreatment and enzymatic hydrolysis of cocoa pod husk (Theobroma cacao L.) for ethanol production. Biomass Bioenergy 154, 106268. doi: 10.1016/j.biombioe.2021.106268
|
Ibrahim, A.P., Omilakin, R.O., Betiku, E., 2019. Optimization of microwave-assisted solvent extraction of non-edible sandbox (Hura crepitans) seed oil: a potential biodiesel feedstock. Renew. Energy 141, 349–358. doi: 10.1016/j.renene.2019.04.010
|
Izmirlioglu, G., Demirci, A., 2012. Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl. Sci. 2, 738–753. doi: 10.3390/app2040738
|
Izmirlioglu, G., Demirci, A., 2017. Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactors. Fuel 202, 260–270. doi: 10.1016/j.fuel.2017.04.047
|
Kamalini, A., Muthusamy, S., Ramapriya, R., Muthusamy, B., Pugazhendhi, A., 2018. Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization. J. Mol. Liq. 254, 55–63. doi: 10.1016/j.molliq.2018.01.091
|
Klein, M., Griess, O., Pulidindi, I.N., Perkas, N., Gedanken, A., 2016. Bioethanol production from Ficus religiosa leaves using microwave irradiation. J. Environ. Manag. 177, 20–25. doi: 10.1016/j.jenvman.2016.03.050
|
Kunlan, L., Lixin, X., Jun, L., Jun, P., Guoying, C., Zuwei, X., 2001. Salt-assisted acid hydrolysis of starch to D-glucose under microwave irradiation. Carbohydr. Res. 331, 9–12. doi: 10.1016/S0008-6215(00)00311-6
|
Manmai, N., Unpaprom, Y., Ponnusamy, V.K., Ramaraj, R., 2020. Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel 278, 118262. doi: 10.1016/j.fuel.2020.118262
|
Moodley, P., Gueguim Kana, E.B., 2019. Bioethanol production from sugarcane leaf waste: effect of various optimized pretreatments and fermentation conditions on process kinetics. Biotechnol. Rep. 22, e00329. doi: 10.1016/j.btre.2019.e00329
|
Patel, A., Patel, H., Divecha, J., Shah, A.R., 2021. Enhanced production of ethanol from enzymatic hydrolysate of microwave-treated wheat straw by statistical optimization and mass balance analysis of bioconversion process. Biofuels 12, 1251–1258. doi: 10.1080/17597269.2019.1608037
|
Ramaraj, R., Unpaprom, Y., 2019. Optimization of pretreatment condition for ethanol production from Cyperus difformis by response surface methodology. 3 Biotech 9, 218.
|
Saleem, A., Hussain, A., Chaudhary, A., Ahmad, Q.U.A., Iqtedar, M., Javid, A., Akram, A.M., 2022. Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers. Biorefinery 12, 1513–1524. doi: 10.1007/s13399-020-01117-x
|
Saqib, A.A.N., Whitney, P.J., 2011. Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass Bioenergy 35, 4748–4750. doi: 10.1016/j.biombioe.2011.09.013
|
Sebayang, A.H., Masjuki, H.H., Ong, H.C., Dharma, S., Silitonga, A.S., Kusumo, F., Milano, J., 2017. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind. Crops Prod. 97, 146–155. doi: 10.1016/j.indcrop.2016.11.064
|
Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y.M., Awasthi, M.K., 2019. Biofuel production from biomass. Current Developments in Biotechnology and Bioengineering. Elsevier, Amsterdam, pp. 79–92.
|
Singh, A., Bishnoi, N.R., 2013. Ethanol production from pretreated wheat straw hydrolyzate by Saccharomyces cerevisiae via sequential statistical optimization. Ind. Crops Prod. 41, 221–226. doi: 10.1016/j.indcrop.2012.04.036
|
Sudhakar, M.P., Ravel, M., Perumal, K., 2021. Pretreatment and process optimization of bioethanol production from spent biomass of Ganoderma lucidum using Saccharomyces cerevisiae. Fuel 306, 121680. doi: 10.1016/j.fuel.2021.121680
|
Sumbhate, S., Nayak, S., Goupale, D., Tiwari, A., Jadon, R.S., 2012. Colorimetric method for the estimation of ethanol in alcoholic-drinks. Journal of Analytical Techniques 1, 1–6.
|
Taiwo, A., Madzimbamuto, T., Ojumu, T., 2018. Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies 11, 1740. doi: 10.3390/en11071740
|
Taiwo, A., Nazamid, S., Abdul-Rasaq, A., 2009. Functional and pasting properties of a tropical breadfruit (Artocarpus altilis) starch from Ile-Ife, Osun State, Nigeria. International Food Research Journal 16, 151–157.
|
Tasić, M.B., Konstantinović, B.V., Lazić, M.L., Veljković, V.B., 2009. The acid hydrolysis of potato tuber mash in bioethanol production. Biochem. Eng. J. 43, 208–211. doi: 10.1016/j.bej.2008.09.019
|
Tenkolu, G.A., Kuffi, K.D., Gindaba, G.T., 2022. Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Convers. Biorefinery 1–19.
|
Tinôco, D., Genier, H.L.A., da Silveira, W.B., 2021. Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures. Renew. Energy 173, 188–196. doi: 10.1016/j.renene.2021.03.132
|
Todhanakasem, T., Wu, B., Simeon, S., 2020. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J. Microbiol. Biotechnol. 36, 112. doi: 10.1007/s11274-020-02885-4
|
Turhan, I., Bialka, K.L., Demirci, A., Karhan, M., 2010. Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour. Technol. 101, 5290–5296. doi: 10.1016/j.biortech.2010.01.146
|
Wang, L., Zhao, X.Q., Xue, C., Bai, F.W., 2013. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels 6, 133. doi: 10.1186/1754-6834-6-133
|
Wang, Y.P., Dai, L.L., Fan, L.L., Shan, S.Q., Liu, Y.H., Roger, R., 2016. Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J. Anal. Appl. Pyrolysis 119, 104–113. doi: 10.5539/apr.v8n3p104
|
Zouhair, F.Z., Kabbour, M.R., Moussaid, S., Ebich, F., Bouksaim, M., Lgaz, H., Cho, Y., Essamri, A., 2023. Fermentation process optimization by response surface methodology for bioethanol production from argane pulp hydrolysate using commercial and laboratory scale isolated Saccharomyces cerevisiae yeast. Biomass Convers. Biorefinery 1–8. doi: 10.26685/urncst.399
|