Citation: | O.D. Arefieva, M.S. Vasilyeva, L.A. Zemnukhova, D.P. Opra, D.A. Nikolaeva, V.V. Tkachev, D.H. Shlyk. Effect of silica source on photocatalytic properties of Bi2O3/Bi2SiO5 heterostructure[J]. Journal of Bioresources and Bioproducts, 2023, 8(2): 176-186. doi: 10.1016/j.jobab.2023.03.003 |
Adam, F., Andas, J., Rahman, I.A., 2010. A study on the oxidation of phenol by heterogeneous iron silica catalyst. Chem. Eng. J. 165, 658–667. doi: 10.1016/j.cej.2010.09.054
|
Arefieva, O.D., Pirogovskaya, P.D., Panasenko, A.E., Kovekhova, A.V., Zemnukhova, L.A., 2021a. The acid-base properties of amorphous silica from straw and rice husk. Khimija Rastitel'nogo Syr'ja, 1, 327–335. doi: 10.14258/jcprm.2021017521
|
Arefieva, O.D., Vasilyeva, M.S., Kuryavy, V.G., Ustinov, A.Y., Zemnukhova, L.A., Gushchina, D.D., 2020. Oxidative destruction of phenol on Fe/SiO2 catalysts. Water Sci. Technol. 81, 2189–2201. doi: 10.2166/wst.2020.277
|
Arefieva, O.D., Vasilyeva, M.S., Lukiyanchuk, I.V., Sedinkina, E.S., Zemnukhova, L.A., Pisartseva, A.I., 2021b. Preparation and photocatalytic properties of β-Bi2O3/Bi2SiO5 heterostructures. Russ. J. Inorg. Chem. 66, 943–949. doi: 10.1134/s0036023621060036
|
Arefieva, O.D., Vasilyeva, M.S., Zemnukhova, L.A., Timochkina, A.S., 2021c. Heterogeneous photo-Fenton oxidation of lignin of rice husk alkaline hydrolysates using Fe-impregnated silica catalysts. Environ. Technol. 42, 2220–2228. doi: 10.1080/09593330.2019.1697376
|
Bailiche, Z., Cherif, L., Royer, S., Bengueddach, A., Fourmentin, S., Siffert, S., 2013. Heterogeneous advanced photo-Fenton oxidation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. MATEC Web Conf. 5, 04033. doi: 10.1051/matecconf/20130504033
|
Balachandaran, K., Venckatesh, R., Sivaraj, R., 2010. Synthesis of nano TiO2-SiO2 composite using sol-gel method: effect on size, surface morphology and thermal stability. Int. J. Eng. Sci. Tech. 2, 3695–3696.
|
Belik, Y., Kharlamova, T., Vodyankin, A., Svetlichnyi, V., Vodyankina, O., 2020. Mechanical activation for soft synthesis of bismuth silicates. Ceram. Int. 46, 10797–10806. doi: 10.1016/j.ceramint.2020.01.090
|
Chen, R.G., Bi, J.H., Wu, L., Wang, W.J., Li, Z.H., Fu, X.Z., 2009. Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets. Inorg. Chem. 48, 9072–9076. doi: 10.1021/ic901084s
|
Cheng, L.J., Hu, X.M., Hao, L., 2018. Constructing novel Bi2SiO5-Bi2O3 hybrid loaded sepiolite with enhanced visible light photocatalytic activity. J. Mater. Sci. 29, 6316–6322. doi: 10.1007/s10854-018-8611-5
|
Depablos-Rivera, O., Bouyanfif, H., Zeinert, A., Le Marrec, F., Rodil, S.E., 2019. Synthesis of Bi2SiO5 thin films by confocal dual magnetron sputtering-annealing route. Thin Solid Films 688, 137258. doi: 10.1016/j.tsf.2019.04.033
|
Devika, S., Tayade, R.J., 2022. Low temperature energy- efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: a review. Chemosphere 304, 135300. doi: 10.1016/j.chemosphere.2022.135300
|
Dou, L., Jin, X.Y., Chen, J.F., Zhong, J.B., Li, J.Z., Zeng, Y., Duan, R., 2020. One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Appl. Surf. Sci. 527, 146775. doi: 10.1016/j.apsusc.2020.146775
|
Espro, C., Marini, S., Galvagno, S., 2016. Heterogeneous Fenton like catalysts for the selective oxidation of light alkanes in aqueous medium. Int. J. Appl. Chem. 12, 713–726.
|
Fatimah, I., Amaliah, S.N., Andrian, M.F., Handayani, T.P., Nurillahi, R., Prakoso, N.I., Wicaksono, W.P., Chuenchom, L., 2019a. Iron oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation. Sustain. Chem. Pharm. 13, 100149. doi: 10.1016/j.scp.2019.100149
|
Fatimah, I., Prakoso, N.I., Sahroni, I., Musawwa, M.M., Sim, Y.L., Kooli, F., Muraza, O., 2019b. Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon 5, e02766. doi: 10.1016/j.heliyon.2019.e02766
|
Fatimah, I., Zaenuri, F.U., Doewandono, L.N., Yahya, A., Citradewi, P.W., Sagadevan, S., Oh, W.C., 2021. Biogenic silica extracted from Salacca leaf ash for salicylic acid adsorption. Sci. Technol. Indonesia 6, 296–302.
|
Gan, P.P., Li, S.F.Y., 2013. Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem. Eng. J. 229, 351–363. doi: 10.1016/j.cej.2013.06.020
|
Ghime, D., Ghosh, P., 2017. Heterogeneous Fenton degradation of oxalic acid by using silica supported iron catalysts prepared from raw rice husk. J. Water Process. Eng. 19, 156–163. doi: 10.1016/j.jwpe.2017.07.025
|
Hanna, K., Kone, T., Medjahdi, G., 2008. Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation. Catal. Commun. 9, 955–959. doi: 10.1016/j.catcom.2007.09.035
|
Kovaleva, E.A., Vodyankina, O.V., Svetlichny, V.A., 2021. Interface features and electronic structure of Bi2SiO5/β-Bi2O3 hetero-junction. Proc SPIE 12086, XV International Conference on Pulsed Lasers and Laser Applications, 89–93.
|
Labib, S., 2017. Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3. J. Saudi Chem. Soc. 21, 664–672. doi: 10.1016/j.jscs.2015.11.003
|
Li, M., Li, F., Yin, P.G., 2014. Tailoring the band structure of β-Bi2O3 by co-doping for realized photocatalytic hydrogen generation. Chem. Phys. Lett. 601, 92–97. doi: 10.1016/j.cplett.2014.03.091
|
Li, S.Y., Fan, X.Q., Gu, M.B., Cagnetta, G., Huang, J., Yu, G., 2022. Confined-space strategy for anchoring catalytic nanoparticles on Si-OH by ball milling for enhanced O3/PMS oxidation of ciprofloxacin. Chem. Eng. J. 429, 132318. doi: 10.1016/j.cej.2021.132318
|
Liu, D., Wang, J., Zhang, M., Liu, Y.F., Zhu, Y.F., 2014. A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphere via a phase junction. Nanoscale 6, 15222–15227. doi: 10.1039/C4NR05058D
|
Lu, H.J., Hao, Q., Chen, T., Zhang, L.H., Chen, D.M., Ma, C., Yao, W.Q., Zhu, Y.F., 2018. A high-performance Bi2O3/Bi2SiO5 p-n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal. B Environ. 237, 59–67. doi: 10.1016/j.apcatb.2018.05.069
|
Mekarsari, H., Taftazani, A., Kamari, A., Fatimah, I., 2020. Green synthesized Fe2O3 nanoparticles and immobilization onto biogenic silica as photocatalyst for photo-decolorization of bromophenol blue. Journal of Engineering Science and Technology 15, 4356–4366.
|
Natarajan, K., Bajaj, H.C., Tayade, R.J., 2016. Photocatalytic efficiency of bismuth oxyhalide (Br, Cl and I) nanoplates for RhB dye degradation under LED irradiation. J. Ind. Eng. Chem. 34, 146–156. doi: 10.1016/j.jiec.2015.11.003
|
Natarajan, T.S., Bajaj, H.C., Tayade, R.J., 2015. Synthesis of homogeneous sphere-like Bi2WO6 nanostructure by silica protected calcination with high visible-light-driven photocatalytic activity under direct sunlight. CrystEngComm 17, 1037–1049. doi: 10.1039/C4CE01839G
|
Natarajan, T.S., Natarajan, K., Bajaj, H.C., Tayade, R.J., 2013. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J. Nanopart. Res. 15, 1669. doi: 10.1007/s11051-013-1669-3
|
Nilchi, A., Janitabar-Darzi, S., Rasouli-Garmarodi, S., 2011. Sol-gel preparation of nanoscale TiO2/SiO2 composite for eliminating of con red azo dye. Mater. Sci. Appl. 2, 476–480. doi: 10.4236/msa.2011.25064
|
Obolenskaya, L.N., Gaynanova, A.A., Kravchenko, G.V., Kuz'micheva, G.M., Savinkina, E.V., Domoroshchina, E.N., Tsybinsky, A.M., Podbelsky, A.V., 2016. Nanocomposites based on silicon dioxide of different nature with functional titanium dioxide nanoparticles. Nanotechnol. Russia 11, 41–56. doi: 10.1134/S1995078016010110
|
Purwiandono, G., Fatimah, I., Sahroni, I., Citradewi, P.W., Kamari, A., Sagadevan, S., Oh, W.C., Doong, R., 2022. Fe3O4@SiO2 nanoflakes synthesized using biogenic silica from Salacca zalacca leaf ash and the mechanistic insight into adsorption and photocatalytic wet peroxidation of dye. Green Process. Synth. 11, 345–360. doi: 10.1515/gps-2022-0034
|
Shabalina, A.V., Golubovskaya, A.G., Fakhrutdinova, E.D., Kulinich, S.A., Vodyankina, O.V., Svetlichyi, V.A., 2022. Phase and structural thermal evolution of Bi-Si-O catalysts obtained via laser ablation. Nanomaterials (Basel) 12, 4101. doi: 10.3390/nano12224101
|
Xie, S.H., Huang, P., Kruzic, J.J., Zeng, X.R., Qian, H.X., 2016. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci. Rep. 6, 21947. doi: 10.1038/srep21947
|
Wei, W., Xie, J.M., Meng, S.C., Lü, X.M., Yan, Z.X., Zhu, J.J., Cui, H.L., 2013. Synthetic bismuth silicate nanostructures: photocatalysts grown from silica aerogels precursors. J. Mater. Res. 28, 1658–1668. doi: 10.1557/jmr.2013.65
|
Yoon, J.G., Oh, H.K., Kwag, Y.J., 1998. Structural and optical properties of TiO2-SiO2 composite films prepared by aerosol-assisted chemical-vapor deposition. J. Korean Phys. Soc. 33, 699–704.
|
Zemnukhova, L.A., Budaeva, V.V., Fedorishcheva, G.A., Kaydalova, T.I., Kurilenko, L.N., Shkorina, E.D., Ilysov, S.G., 2009. Inorganic components of straw and hull of an oats. Chem. Plant Raw Mater. 1, 147–152.
|
Zemnukhova, L.A., Egorov, A.G., Fedorishcheva, G.A., Barinov, N.N., Sokol'nitskaya, T.A., Botsul, A.I., 2006. Properties of amorphous silica produced from rice and oat processing waste. Inorg. Mater. 42, 24–29. doi: 10.1134/S0020168506010067
|
Zemnukhova, L.A., Fedorishcheva, G.A., Egorov, A.G., Sergienko, V.I., 2005. Recovery conditions, impurity composition, and characteristics of amorphous silicon dioxide from wastes formed in rice production. Russ. J. Appl. Chem. 78, 319–323. doi: 10.1007/s11167-005-0283-2
|
Zhang, L., Wang, W.Z., Sun, S.M., Jiang, D., Gao, E.P., 2013. Solar light photocatalysis using Bi2O3/Bi2SiO5 nanoheterostructures formed in mesoporous SiO2 microspheres. CrystEngComm 15, 10043–10048. doi: 10.1039/c3ce41433g
|
Zhang, L., Wang, W.Z., Sun, S.M., Xu, J.H., Shang, M., Ren, J., 2010. Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Appl. Catal. B Environ. 100, 97–101. doi: 10.1016/j.apcatb.2010.07.018
|
Zhong, X., Royer, S., Zhang, H., Huang, Q.Q., Xiang, L.J., Valange, S., Barrault, J., 2011. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton process. Sep. Purif. Technol. 80, 163–171. doi: 10.1016/j.seppur.2011.04.024
|