Citation: | Sreesha Malayil, Athira Nair Surendran, Kunal Kate, Jagannadh Satyavolu. Utilization of residual fatty acids in matter organic non-glycerol from a soy biodiesel plant in filaments used for 3D printing[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 215-223. doi: 10.1016/j.jobab.2023.04.001 |
Adhikari, S., Illukpitiya, P., 2021. Small-scale biodiesel production for on-farm energy security: a sustainable income diversification opportunity for oilseed producers. Biofuels 12, 605–614. doi: 10.1080/17597269.2021.1872290
|
Bagheri, S., Julkapli, N.M., Yehye, W.A., 2015. Catalytic conversion of biodiesel derived raw glycerol to value added products. Renew. Sustain. Energy Rev. 41, 113–127. doi: 10.1016/j.rser.2014.08.031
|
Bagnato, G., Iulianelli, A., Sanna, A., Basile, A., 2017. Glycerol production and transformation: a critical review with particular emphasis on glycerol reforming reaction for producing hydrogen in conventional and membrane reactors. Membranes 7, 17. doi: 10.3390/membranes7020017
|
Balla, V.K., Kate, K.H., Tadimeti, J.G.D., Satyavolu, J., 2020a. Influence of soybean hull fiber concentration on the water absorption and mechanical properties of 3D-printed thermoplastic copolyester/soybean hull fiber composites. J. Mater. Eng. Perform. 29, 5582–5593. doi: 10.1007/s11665-020-05021-3
|
Balla, V.K., Tadimeti, J.G.D., Kate, K.H., Satyavolu, J., 2020b. 3D printing of modified soybean hull fiber/polymer composites. Mater. Chem. Phys. 254, 123452. doi: 10.1016/j.matchemphys.2020.123452
|
Balla, V.K., Tadimeti, J.G.D., Sudan, K., Satyavolu, J., Kate, K.H., 2021. First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Prog. Addit. Manuf. 6, 39–52. doi: 10.1007/s40964-020-00138-2
|
Błażek, K., Kasprzyk, P., Datta, J., 2020. Diamine derivatives of dimerized fatty acids and bio-based polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes. Polymer (Guildf) 205, 122768. doi: 10.1016/j.polymer.2020.122768
|
Carretero, D.S., Huang, C.P., Tzeng, J.H., Huang, C.P., 2021. The recovery of sulfuric acid from spent piranha solution over a dimensionally stable anode (DSA) Ti-RuO2 electrode. J. Hazard. Mater. 406, 124658. doi: 10.1016/j.jhazmat.2020.124658
|
Cherif, A., Boukhchina, S., Angers, P., 2019. GC–MS characterization of cyclic fatty acid monomers and isomers of unsaturated fatty acids formed during the soybean oil heating process. Eur. J. Lipid Sci. Technol. 121, 1800296. doi: 10.1002/ejlt.201800296
|
Chilakamarry, C.R., Mimi Sakinah, A.M., Zularisam, A.W., Pandey, A., 2021. Glycerol waste to value added products and its potential applications. Syst. Microbiol. Biomanufacturing 1, 378–396. doi: 10.1007/s43393-021-00036-w
|
Demirbas, A., 2007. Importance of biodiesel as transportation fuel. Energy Policy 35, 4661–4670. doi: 10.1016/j.enpol.2007.04.003
|
Demirbas, A., 2009a. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 50, 14–34. doi: 10.1016/j.enconman.2008.09.001
|
Demirbas, A., 2009b. Biofuels securing the planet's future energy needs. Energy Convers. Manag. 50, 2239–2249. doi: 10.1016/j.enconman.2009.05.010
|
Feng, G.D., Hu, L.H., Ma, Y., Jia, P.Y., Hu, Y., Zhang, M., Liu, C.G., Zhou, Y.H., 2018. An efficient bio-based plasticizer for poly(vinyl chloride) from waste cooking oil and citric acid: synthesis and evaluation in PVC films. J. Clean. Prod. 189, 334–343. doi: 10.1016/j.jclepro.2018.04.085
|
Glisic, S.B., Pajnik, J.M., Orlović, A.M., 2016. Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Appl. Energy 170, 176–185. doi: 10.1016/j.apenergy.2016.02.102
|
Goldsmith, P.D., 2008. Economics of Soybean production, marketing, and utilization. Soybeans. Amsterdam: Elsevier, 117–150.
|
Hou, J., Zhang, P.D., Yuan, X.Z., Zheng, Y.H., 2011. Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renew. Sustain. Energy Rev. 15, 5081–5091. doi: 10.1016/j.rser.2011.07.048
|
Jahromi, H., Adhikari, S., Roy, P., Shelley, M., Hassani, E., Oh, T.S., 2021. Synthesis of novel biolubricants from waste cooking oil and cyclic oxygenates through an integrated catalytic process. ACS Sustain. Chem. Eng. 9, 13424–13437. doi: 10.1021/acssuschemeng.1c03523
|
Kachel-Jakubowska, M., Matwijczuk, A., Gagoś, M., 2017. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophys. 31, 175–182. doi: 10.1515/intag-2016-0042
|
Lehuger, S., Gabrielle, B., Gagnaire, N., 2009. Environmental impact of the substitution of imported soybean meal with locally-produced rapeseed meal in dairy cow feed. J. Clean. Prod. 17, 616–624. doi: 10.1016/j.jclepro.2008.10.005
|
Mahamuni, N.N., Adewuyi, Y.G., 2009. Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel-biodiesel blends, and blend adulteration with soy oil. Energy Fuels 23, 3773–3782. doi: 10.1021/ef900130m
|
Matwijczuk, A., Zając, G., Karcz, D., Chruściel, E., Matwijczuk, A., Kachel-Jakubowska, M., Łapczyńska-Kordon, B., Gagoś, M., 2018. Spectroscopic studies of the quality of WCO (waste cooking oil) fatty acid methyl esters. BIO Web. Conf. 10, 02019. doi: 10.1051/bioconf/20181002019
|
McBain, J.W., Sierichs, W.C., 1948. The solubility of sodium and potassium soaps and the phase diagrams of aqueous potassium soaps. J. Am. Oil Chem. Soc. 25, 221–225. doi: 10.1007/BF02645899
|
Mena-Cervantes, V.Y., Hernández-Altamirano, R., Tiscareño-Ferrer, A., 2020. Development of a green one-step neutralization process for valorization of crude glycerol obtained from biodiesel. Environ. Sci. Pollut. Res. 27, 28500–28509. doi: 10.1007/s11356-019-07287-0
|
Monteiro, M.R., Kugelmeier, C.L., Pinheiro, R.S., Batalha, M.O., da Silva César, A., 2018. Glycerol from biodiesel production: technological paths for sustainability. Renew. Sustain. Energy Rev. 88, 109–122. doi: 10.1016/j.rser.2018.02.019
|
Morales, M.T., Rios, J.J., Aparicio, R., 1997. Changes in the volatile composition of virgin olive oil during oxidation: flavors and off-flavors. J. Agric. Food Chem. 45, 2666–2673. doi: 10.1021/jf960585+
|
Morodo, R., Gérardy, R., Petit, G., Monbaliu, J.C.M., 2019. Continuous flow upgrading of glycerol toward oxiranes and active pharmaceutical ingredients thereof. Green Chem. 21, 4422–4433. doi: 10.1039/c9gc01819k
|
Mungroo, R., Pradhan, N.C., Goud, V.V., Dalai, A.K., 2008. Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem. Soc. 85, 887–896. doi: 10.1007/s11746-008-1277-z
|
Omidghane, M., Bartoli, M., Asomaning, J., Xia, L., Chae, M., Bressler, D.C., 2020. Pyrolysis of fatty acids derived from hydrolysis of brown grease with biosolids. Environ. Sci. Pollut. Res. 27, 26395–26405. doi: 10.1007/s11356-020-09041-3
|
Ong, H.C., Tiong, Y.W., Goh, B.H.H., Gan, Y.Y., Mofijur, M., Rizwanul Fattah, I.M., Chong, C.T., Alam, M.A., Lee, H.V., Silitonga, A.S., Mahlia, T.M.I., 2021. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: opportunities and challenges. Energy Convers. Manag. 228, 113647. doi: 10.1016/j.enconman.2020.113647
|
Perea-Moreno, M.A., Samerón-Manzano, E., Perea-Moreno, A.J., 2019. Biomass as renewable energy: worldwide research trends. Sustainability 11, 863. doi: 10.3390/su11030863
|
Prajapati, H.N., Dalrymple, D.M., Serajuddin, A.T.M., 2012. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm. Res. 29, 285–305. doi: 10.1007/s11095-011-0541-3
|
Rajkumar, K., Muthukumar, M., Sivakumar, R., 2010. Novel approach for the treatment and recycle of wastewater from soya edible oil refinery industry: an economic perspective. Resour. Conserv. Recycl. 54, 752–758. doi: 10.1016/j.resconrec.2009.12.005
|
Soares Dias, A.P., Catarino, M., Gomes, J., 2021. Co-processing lard/soybean oil over Ca-based catalysts to greener biodiesel. Environ. Technol. Innov. 21, 101220. doi: 10.1016/j.eti.2020.101220
|
Srivastava, A., Prasad, R., 2000. Triglycerides-based diesel fuels. Renew. Sustain. Energy Rev. 4, 111–133. doi: 10.1016/S1364-0321(99)00013-1
|
Tamagno, S., Aznar-Moreno, J.A., Durrett, T.P., Vara Prasad, P.V., Rotundo, J.L., Ciampitti, I.A., 2020. Dynamics of oil and fatty acid accumulation during seed development in historical soybean varieties. Field Crops Res. 248, 107719. doi: 10.1016/j.fcr.2020.107719
|
Tanaka, A., 1969. Synthesis of dl-aleprylic acid. J. Lipid Res. 10, 681–682. doi: 10.1016/S0022-2275(20)43030-5
|
Toldrá-Reig, F., Mora, L., Toldrá, F., 2020. Trends in biodiesel production from animal fat waste. Appl. Sci. 10, 3644. doi: 10.3390/app10103644
|
Vladimír, M., Matwijczuk, A.P., Niemczynowicz, A., Kycia, R.A., Karcz, D., Gładyszewska, B., Ślusarczyk, L., Burg, P., 2021. Chemometric approach to characterization of the selected grape seed oils based on their fatty acids composition and FTIR spectroscopy. Sci. Rep. 11, 19256. doi: 10.1038/s41598-021-98763-6
|
Vorum, H., Brodersen, R., Kragh-Hansen, U., Pedersen, A.O., 1992. Solubility of long-chain fatty acids in phosphate buffer at pH 7.4. Biochim. Biophys. Acta BBA Lipids Lipid Metab. 1126, 135–142. doi: 10.1016/0005-2760(92)90283-2
|
Wu, L.K., Chen, K.Y., Cheng, S.Y., Lee, B.S., Shu, C.M., 2008. Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid. J. Therm. Anal. Calorim. 93, 115–120. doi: 10.1007/s10973-007-8829-6
|