Citation: | Zhen Shang, Xingye An, Shuangxi Nie, Na Li, Haibing Cao, Zhengbai Cheng, Hongbin Liu, Yonghao Ni, Liqin Liu. Design of B/N Co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 292-305. doi: 10.1016/j.jobab.2023.05.002 |
Agari, Y., Uno, T., 1985. Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci. 30, 2225–2235. doi: 10.1002/app.1985.070300534
|
Bian, W., Wang, X., Wang, Y.K., Yang, H.F., Huang, J.L., Cai, Z.W., Choi, M.M.F., 2018. Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence 33, 174–180. doi: 10.1002/bio.3390
|
Candelaria, S.L., Shao, Y.Y., Zhou, W., Li, X.L., Xiao, J., Zhang, J.G., Wang, Y., Liu, J., Li, J.H., Cao, G.Z., 2012. Nanostructured carbon for energy storage and conversion. Nano Energy 1, 195–220. doi: 10.1016/j.nanoen.2011.11.006
|
Chen, C.J., Hu, L.B., 2018. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51, 3154–3165. doi: 10.1021/acs.accounts.8b00391
|
Chen, H., Liu, T., Mou, J.R., Zhang, W.J., Jiang, Z.J., Liu, J., Huang, J.L., Liu, M.L., 2019. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy 63, 103836. doi: 10.1016/j.nanoen.2019.06.032
|
Chen, J., Huang, X.Y., Zhu, Y.K., Jiang, P.K., 2017. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27, 1604754. doi: 10.1002/adfm.201604754
|
Chen, L.F., Huang, Z.H., Liang, H.W., Gao, H.L., Yu, S.H., 2014. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Funct. Mater. 24, 5104–5111. doi: 10.1002/adfm.201400590
|
Chen, Z., Hou, L.Q., Cao, Y., Tang, Y.S., Li, Y.F., 2018. Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl. Surf. Sci. 435, 937–944. doi: 10.1016/j.apsusc.2017.11.159
|
Cheng, Y.L., Huang, L., Xiao, X., Yao, B., Yuan, L.Y., Li, T.Q., Hu, Z.M., Wang, B., Wan, J., Zhou, J., 2015. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15, 66–74. doi: 10.1016/j.nanoen.2015.04.007
|
Costentin, C., Porter, T.R., Savéant, J.M., 2017. How do pseudocapacitors store energy? theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658. doi: 10.1021/acsami.6b14100
|
Deng, X.Y., Li, J.J., Zhu, S., Ma, L.Y., Zhao, N.Q., 2019. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Mater 23, 491–498. doi: 10.1016/j.ensm.2019.04.015
|
Deniz, İ., Kırcı, H., Ates, S., 2004. Optimisation of wheat straw Triticum drum kraft pulping. Ind. Crops Prod. 19, 237–243. doi: 10.1016/j.indcrop.2003.10.011
|
Dubey, R., Guruviah, V., 2019. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics (Kiel) 25, 1419–1445. doi: 10.1007/s11581-019-02874-0
|
Ferrari, A.C., 2007. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57. doi: 10.3917/jdp.250.0047
|
Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C.C., Zhi, C.Y., 2010. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993. doi: 10.1021/nn1006495
|
Guo, J.H., Yu, Y.R., Sun, L.Y., Zhang, Z.H., Zhao, Y.J., Chai, R.J., Shi, K.Q., 2020. Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor. Chem. Eng. J. 397, 125517. doi: 10.1016/j.cej.2020.125517
|
Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A.J., Tschirner, U., 2009. Alkaline sulfite–anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Ind. Crops Prod. 29, 27–36. doi: 10.1016/j.indcrop.2008.03.013
|
Kim, B.H., Yang, K.S., 2013. Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochim. Acta 88, 597–603. doi: 10.1016/j.electacta.2012.10.123
|
Kim, J.G., Kim, H.C., Kim, N.D., Khil, M.S., 2020. N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@SAN structure for high performance supercapacitor. Compos. B Eng. 186, 107825. doi: 10.1016/j.compositesb.2020.107825
|
Lamm, M.E., Li, K., Qian, J., Wang, L., Lavoine, N., Newman, R., Gardner, D.J., Li, T., Hu, L.B., Ragauskas, A.J., Tekinalp, H., Kunc, V., Ozcan, S., 2021. Recent advances in functional materials through cellulose nanofiber templating. Adv. Mater. 33, 2005538. doi: 10.1002/adma.202005538
|
Li, J., Wang, Y.J., Zhang, L., Xu, Z.Y., Dai, H.Q., Wu, W.B., 2019. Nanocellulose/gelatin composite cryogels for controlled drug release. ACS Sustain. Chem. Eng. 7, 6381–6389. doi: 10.1021/acssuschemeng.9b00161
|
Li, Z.W., Mi, H.Y., Liu, L., Bai, Z.Y., Zhang, J.P., Zhang, Q., Qiu, J.S., 2018. Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworks toward alkaline and neutral supercapacitors. Carbon 136, 176–186. doi: 10.1016/j.carbon.2018.04.075
|
Lin, T.Q., Chen, I., Liu, F.X., Yang, C.Y., Bi, H., Xu, F.F., Huang, F.Q., 2015. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513. doi: 10.1126/science.aab3798
|
Louis, A.C.F., Venkatachalam, S., Gupta, S., 2022. Innovative strategy for rice straw valorization into nanocellulose and nanohemicellulose and its application. Ind. Crops Prod. 179, 114695. doi: 10.1016/j.indcrop.2022.114695
|
Ma, L.Y., Liu, J., Lv, S., Zhou, Q., Shen, X.Y., Mo, S.B., Tong, H., 2019. Scalable one-step synthesis of N, S co-doped graphene-enhanced hierarchical porous carbon foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 7, 7591–7603. doi: 10.1039/c9ta00038k
|
Maity, C.K., Hatui, G., Sahoo, S., Saren, P., Nayak, G.C., 2019. Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. ChemistrySelect 4, 3672–3680. doi: 10.1002/slct.201803560
|
Martelli-Tosi, M., Masson, M.M., Silva, N.C., Esposto, B.S., Barros, T.T., Assis, O.B.G., Tapia-Blácido, D.R., 2018. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 198, 61–68. doi: 10.1016/j.carbpol.2018.06.053
|
Nechyporchuk, O., Belgacem, M.N., Bras, J., 2016. Production of cellulose nanofibrils: a review of recent advances. Ind. Crops Prod. 93, 2–25. doi: 10.1016/j.indcrop.2016.02.016
|
Nehra, P., Chauhan, R.P., 2022. Facile synthesis of nanocellulose from wheat straw as an agricultural waste. Iran. Polym. J. 31, 771–778. doi: 10.1007/s13726-022-01040-0
|
Patil, I.M., Kapse, S., Parse, H., Thapa, R., Andersson, G., Kakade, B., 2020. 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode material for supercapacitor. J. Power Sources 479, 229092. doi: 10.1016/j.jpowsour.2020.229092
|
Peng, Z.Y., Zou, Y.B., Xu, S.Q., Zhong, W.B., Yang, W.T., 2018. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Appl. Mater. Interfaces 10, 22190–22200. doi: 10.1021/acsami.8b05171
|
Pires, J.R.A., Souza, V.G.L., Fernando, A.L., 2019. Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Ind. Crops Prod. 140, 111642. doi: 10.1016/j.indcrop.2019.111642
|
Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Tascón, J.M.D., 2020. Phosphorus-containing carbons: preparation, properties and utilization. Carbon N Y 157, 796–846. doi: 10.1016/j.carbon.2019.10.018
|
Ratajczak, P., Suss, M.E., Kaasik, F., Béguin, F., 2019. Carbon electrodes for capacitive technologies. Energy Storage Mater. 16, 126–145. doi: 10.1016/j.ensm.2018.04.031
|
Raza, W., Ali, F., Raza, N., Luo, Y.W., Kim, K.H., Yang, J.H., Kumar, S., Mehmood, A., Kwon, E.E., 2018. Recent advancements in supercapacitor technology. Nano Energy 52, 441–473. doi: 10.1016/j.nanoen.2018.08.013
|
Rezanezhad, S., Nazanezhad, N., Asadpur, G., 2015. Isolation of nanocellulose from rice waste via ultrasonication. Lignocellulose 2, 282–291. http://www.researchgate.net/publication/353287787_Isolation_of_Nanocellulose_from_Rice_Waste_via_Ultrasonication/download
|
Saha, S., Jana, M., Samanta, P., Murmu, N.C., Kim, N.H., Kuila, T., Lee, J.H., 2017. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 190, 153–165. doi: 10.1016/j.matchemphys.2017.01.025
|
Shang, Z., An, X.Y., Liu, L.Q., Yang, J., Zhang, W., Dai, H.Q., Cao, H.B., Xu, Q.L., Liu, H.B., Ni, Y.H., 2021. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydr. Polym. 251, 117107. doi: 10.1016/j.carbpol.2020.117107
|
Shang, Z., An, X.Y., Zhang, H., Shen, M.X., Baker, F., Liu, Y.X., Liu, L.Q., Yang, J., Cao, H.B., Xu, Q.L., Liu, H.B., Ni, Y.H., 2020. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 161, 62–70. doi: 10.1016/j.carbon.2020.01.020
|
Shiraishi, S., Kibe, M., Yokoyama, T., Kurihara, H., Patel, N., Oya, A., Kaburagi, Y., Hishiyama, Y., 2006. Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect. Appl. Phys. A 82, 585–591. doi: 10.1007/s00339-005-3399-6
|
Wan, L., Shamsaei, E., Easton, C.D., Yu, D.B., Liang, Y., Chen, X.F., Abbasi, Z., Akbari, A., Zhang, X.W., Wang, H.T., 2017. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon N Y 121, 330–336. doi: 10.1016/j.carbon.2017.06.017
|
Wang, Y., Bian, W., Xiao, D., 2019a. Thermally conductive and electrical insulation BNNS/CNF aerogel nano-paper. Polymers (Basel) 11, 660. doi: 10.3390/polym11040660
|
Wang, D.W., Li, F., Chen, Z.G., Lu, G.Q., Cheng, H.M., 2008. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 20, 7195–7200. doi: 10.1021/cm801729y
|
Wang, H., Yan, T.T., Shen, J.J., Zhang, J.P., Shi, L.Y., Zhang, D.S., 2020. Efficient removal of metal ions by capacitive deionization with straw waste derived graphitic porous carbon nanosheets. Environ. Sci. : Nano 7, 317–326. doi: 10.1039/c9en01233h
|
Wang, Y.L., Qu, Q.L., Gao, S.T., Tang, G.S., Liu, K.M., He, S.J., Huang, C.B., 2019b. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon N Y 155, 706–726. doi: 10.1016/j.carbon.2019.09.018
|
Wang, Y.M., Liu, T., Lin, X.J., Chen, H., Chen, S., Jiang, Z.J., Chen, Y., Liu, J., Huang, J.L., Liu, M.L., 2018. Self-templated synthesis of hierarchically porous N-doped carbon derived from biomass for supercapacitors. ACS Sustain. Chem. Eng. 6, 13932–13939. doi: 10.1021/acssuschemeng.8b02255
|
Wu, H., Yuan, W.Y., Zhao, Y.X., Han, D.Y., Yuan, X.W., Cheng, L.F., 2019. B, N-dual doped sisal-based multiscale porous carbon for high-rate supercapacitors. RSC Adv 9, 1476–1486. doi: 10.1039/c8ra09663e
|
Zhang, G.F., Zhang, J., Qin, Q., Cui, Y.X., Luo, W.H., Sun, Y., Jin, C., Zheng, W.J., 2017. Tensile force-induced tearing and collapse of ultrathin carbon shells to surface-wrinkled grape skins for high performance supercapacitor electrodes. J. Mater. Chem. A 5, 14190–14197. doi: 10.1039/C7TA03113K
|
Zhang, L.L., Zhao, X., Ji, H.X., Stoller, M.D., Lai, L.F., Murali, S., McDonnell, S., Cleveger, B., Wallace, R.M., Ruoff, R.S., 2012. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ. Sci. 5, 9618–9625. doi: 10.1039/c2ee23442d
|
Zhang, Y.H., Shang, Z., Shen, M.X., Chowdhury, S.P., Ignaszak, A., Sun, S.H., Ni, Y.H., 2019. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors. ACS Sustainable Chem. Eng. 7, 11175–11185. doi: 10.1021/acssuschemeng.9b00321
|
Zhu, Q.L., Pachfule, P., Strubel, P., Li, Z.P., Zou, R.Q., Liu, Z., Kaskel, S., Xu, Q., 2018. Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Mater. 13, 72–79. doi: 10.1016/j.ensm.2017.12.027
|
Zou, X.X., Wu, D.P., Mu, Y.F., Xing, L.Y., Zhang, W.C., Gao, Z.Y., Xu, F., Jiang, K., 2020. Boron and nitrogen Co-doped holey graphene aerogels with rich B–N motifs for flexible supercapacitors. Carbon 159, 94–101. doi: 10.1016/j.carbon.2019.12.018
|