Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Ralfs Pomilovskis, Eliza Kaulina, Inese Mierina, Arnis Abolins, Olga Kockova, Anda Fridrihsone, Mikelis Kirpluks. Wood pulp industry by-product valorization for acrylate synthesis and bio-based polymer development via Michael addition reaction[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 265-279. doi: 10.1016/j.jobab.2023.06.001
Citation: Ralfs Pomilovskis, Eliza Kaulina, Inese Mierina, Arnis Abolins, Olga Kockova, Anda Fridrihsone, Mikelis Kirpluks. Wood pulp industry by-product valorization for acrylate synthesis and bio-based polymer development via Michael addition reaction[J]. Journal of Bioresources and Bioproducts, 2023, 8(3): 265-279. doi: 10.1016/j.jobab.2023.06.001

Wood pulp industry by-product valorization for acrylate synthesis and bio-based polymer development via Michael addition reaction

doi: 10.1016/j.jobab.2023.06.001
More Information
  • Corresponding author: E-mail address: ralfs.pomilovskis@kki.lv (R. Pomilovskis)
  • Received Date: 2023-03-04
  • Accepted Date: 2023-04-22
  • Rev Recd Date: 2023-04-16
  • Publish Date: 2023-07-30
  • It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based advanced materials in order to transform the current economic climate into a greener economy. Tall oil, as a by-product of the Kraft process of wood pulp manufacture, is a promising resource for the extraction of various value-added products. Tall oil fatty acids-based multifunctional Michael acceptor acrylates were developed. The suitability of developed acrylates for polymerization with tall oil fatty acids-based Michael donor acetoacetates to form a highly cross-linked polymer material via the Michael addition was investigated. With this novel strategy, valuable chemicals and innovative polymer materials can be produced from tall oil in an entirely new way, making a significant contribution to the development of a forest-based bioeconomy. Two different tall oil-based acrylates were successfully synthesized and characterized. Synthesized acrylates were successfully used in the synthesis of bio-based thermoset polymers. Obtained polymers had a wide variety of mechanical and thermal properties (glass transition temperature from –12.1 to 29.6 ℃ by dynamic mechanical analysis, Young's modulus from 15 to 1 760 MPa, and stress at break from 0.9 to 16.1 MPa). Gel permeation chromatography, Fourier-transform infrared (FT-IR) spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and nuclear magnetic resonance were used to analyse the chemical structure of synthesized acrylates. In addition, various titration methods and rheology tests were applied to characterize acrylates. The chemical composition and thermal and mechanical properties of the developed polymers were studied by using FT-IR, solid-state nuclear magnetic resonance, thermal gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and universal strength testing apparatus.


  • No conflict of interest.
    Declaration of Competing Interest
  • loading
  • Abolins, A., Pomilovskis, R., Vanags, E., Mierina, I., Michalowski, S., Fridrihsone, A., Kirpluks, M., 2021. Impact of different epoxidation approaches of tall oil fatty acids on rigid polyurethane foam thermal insulation. Materials. (Basel) 14, 894. doi: 10.3390/ma14040894
    Aryan, V., Kraft, A., 2021. The crude tall oil value chain: global availability and the influence of regional energy policies. J. Clean. Prod. 280, 124616. doi: 10.1016/j.jclepro.2020.124616
    Baghban, S.A., Ebrahimi, M., Khorasani, M., 2022. A facile method to synthesis of a highly acrylated epoxidized soybean oil with low viscosity: combined experimental and computational approach. Polym. Test. 115, 107727. doi: 10.1016/j.polymertesting.2022.107727
    Barszczewska-Rybarek, I.M., Korytkowska-Wałach, A., Kurcok, M., Chladek, G., Kasperski, J., 2017. DMA analysis of the structure of crosslinked poly(methyl methacrylate)s. Acta. Bioeng. Biomech. 19, 47–53.
    Boucher, D., Ladmiral, V., Negrell, C., Caussé, N., Pébère, N., 2021. Partially acrylated linseed oil UV-cured coating containing a dihemiacetal ester for the corrosion protection of an aluminium alloy. Prog. Org. Coat. 158, 106344. doi: 10.1016/j.porgcoat.2021.106344
    Briede, S., Jurinovs, M., Nechausov, S., Platnieks, O., Gaidukovs, S., 2022. State-of-the-art UV-assisted 3D printing via a rapid syringe-extrusion approach for photoactive vegetable oil acrylates produced in one-step synthesis. Mol. Syst. Des. Eng. 7, 1434–1448. doi: 10.1039/d2me00085g
    Cao, Z.Y., Gao, F., Zhao, J.Z., Wei, X., Cheng, Q., Zhong, J., Lin, C., Shu, J.B., Fu, C.Q., Shen, L., 2019. Bio-based coating materials derived from acetoacetylated soybean oil and aromatic dicarboxaldehydes. Polymers. (Basel) 11, 1809. doi: 10.3390/polym11111809
    Cheong, M.Y., Hasan, Z.A.A., Idris, Z., 2019. Characterisation of epoxidised trimethylolpropane trioleate: NMR and thermogravimetric analysis. J. Oil. Palm. Res. 31, 146–158.
    Claux, O., Rapinel, V., Abert-Vian, M., Chemat, F., 2023. Green Extraction of Vegetable Oils: From Tradition to Innovation. Reference Module in Food Science. Elsevier, Amsterdam.
    Dechent, S.E., Kleij, A.W., Luinstra, G.A., 2020. Fully bio-derived CO2 polymers for non-isocyanate based polyurethane synthesis. Green. Chem 22, 969–978. doi: 10.1039/c9gc03488a
    European Commission, 2019. The European Green Deal. Available at: https://www.europarl.europa.eu/RegData/etudes/ATAG/2019/644205/EPRS_ATA(2019)644205_EN.pdf#:~:text=The%20European%20Green%20Deal%20is%20a%20programme%20outlined,an%20extraordinary%20plenary%20session%20on%2011%20December%202019.
    Gan, Y.C., Jiang, X.S., 2014. Photo-cured materials from vegetable oils. In: Liu, Z.S., Kraus, G. (Eds.), Green Materials from Plant Oils. The Royal Society of Chemistry, London, pp. 1–27.
    Gapsari, F., Djakfar, L., Handajani, R.P., Yusran, Y.A., Hidayatullah, S., Rangappa, S.M., Siengchin, S., 2022. The application of timoho fiber coating to improve the composite performance. Results. Eng 15, 100499. doi: 10.1016/j.rineng.2022.100499
    Ge, X.Y., Yu, L., Liu, Z.S., Liu, H.S., Chen, Y., Chen, L., 2019. Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film. Int. J. Biol. Macromol. 125, 370–375. doi: 10.1016/j.ijbiomac.2018.11.239
    He, X.F., Zhong, J., Cao, Z.Y., Wang, J.L., Gao, F., Xu, D.D., Shen, L., 2019. An exploration of the Knoevenagel condensation to create ambient curable coating materials based on acetoacetylated castor oil. Prog. Org. Coat. 129, 21–25. doi: 10.1016/j.porgcoat.2018.12.015
    Hermens, J.G.H., Freese, T., van den Berg, K.J., van Gemert, R., Feringa, B.L., 2020. A coating from nature. Sci. Adv. 6, eabe0026. doi: 10.1126/sciadv.abe0026
    Hill, L.W., 1997. Calculation of crosslink density in short chain networks. Prog. Org. Coat. 31, 235–243. doi: 10.1016/S0300-9440(97)00081-7
    Hu, Y., Jia, P.Y., Shang, Q.Q., Zhang, M., Feng, G.D., Liu, C.G., Zhou, Y.H., 2019. Synthesis and application of UV-curable phosphorous-containing acrylated epoxidized soybean oil-based resins. J. Bioresour. Bioprod. 4, 183–191.
    Jena, K.K., Raju, K.V.S.N., 2008. Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Ind. Eng. Chem. Res. 47, 9214–9224. doi: 10.1021/ie800884y
    Kathalewar, M., Sabnis, A., D'Mello, D., 2014. Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 57, 99–108. doi: 10.1016/j.eurpolymj.2014.05.008
    Kathalewar, M.S., Joshi, P.B., Sabnis, A.S., Malshe, V.C., 2013. Non-isocyanate polyurethanes: from chemistry to applications. RSC. Adv 3, 4110–4129. doi: 10.1039/c2ra21938g
    Kim, T.H., Kim, M., Lee, W., Kim, H.G., Lim, C.S., Seo, B., 2019. Synthesis and characterization of a polyurethane phase separated to nano size in an epoxy polymer. Coatings 9, 319. doi: 10.3390/coatings9050319
    Kirpluks, M., Kalnbunde, D., Walterova, Z., Cabulis, U., 2017. Rapeseed oil as feedstock for high functionality polyol synthesis. J. Renew. Mater. 5, 258–270. doi: 10.7569/JRM.2017.634116
    Kirpluks, M., Pomilovskis, R., Vanags, E., Abolins, A., Mierina, I., Fridrihsone, A., 2022. Influence of different synthesis conditions on the chemo-enzymatic epoxidation of tall oil fatty acids. Process. Biochem. 122, 38–49. doi: 10.1016/j.procbio.2022.08.024
    Krall, E.M., Serum, E.M., Sibi, M.P., Webster, D.C., 2018. Catalyst-free lignin valorization by acetoacetylation. Structural elucidation by comparison with model compounds. Green. Chem 20, 2959–2966. doi: 10.1039/C8GC01071D
    La Scala, J., Wool, R.P., 2002. The effect of fatty acid composition on the acrylation kinetics of epoxidized triacylglycerols. J. Am. Oil. Chem. Soc. 79, 59–63. doi: 10.1007/s11746-002-0435-4
    Li, Y.H., Sun, X.S., 2015. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC. Adv 5, 44009–44017. doi: 10.1039/C5RA04399A
    Liang, B., Kuang, S.J., Huang, J.J., Man, L.M., Yang, Z.H., Yuan, T., 2019. Synthesis and characterization of novel renewable tung oil-based UV-curable active monomers and bio-based copolymers. Prog. Org. Coat. 129, 116–124. doi: 10.5469/neuroint.2019.00073
    Lindsay, C.D., Timperley, C.M., 2020. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum. Exp. Toxicol. 39, 14–36. doi: 10.1177/0960327119877460
    Liu, P.F., Zhang, X.P., Liu, R., Liu, X.Y., Liu, J.C., 2019. Highly functional bio-based acrylates with a hard core and soft arms: from synthesis to enhancement of an acrylated epoxidized soybean oil-based UV-curable coating. Prog. Org. Coat. 134, 342–348. doi: 10.1016/j.porgcoat.2019.05.025
    Lomège, J., Lapinte, V., Negrell, C., Robin, J.J., Caillol, S., 2019. Fatty acid-based radically polymerizable monomers: from novel poly(meth)acrylates to cutting-edge properties. Biomacromolecules 20, 4–26. doi: 10.1021/acs.biomac.8b01156
    Luo, A.F., Jiang, X.S., Lin, H., Yin, J., 2011. "Thiol-ene" photo-cured hybrid materials based on POSS and renewable vegetable oil. J. Mater. Chem. 21, 12753–12760. doi: 10.1039/c1jm11425e
    Menard, K.P., 1999. Dynamic Mechanical Analysis: A Practical Introduction. CRC Press, Boca Raton, Fla.
    Müller, R., Wilke, G., 2014. Synthesis and radiation curing of acrylated castor oil glycerides. J. Coat. Technol. Res. 11, 873–882. doi: 10.1007/s11998-014-9596-5
    Naga, N., Satoh, M., Magara, T., Ahmed, K., Nakano, T., 2021. Synthesis of gels by means of Michael addition reaction of multi-functional acetoacetate and diacrylate compounds and their application to ionic conductive gels. J. Polym. Sci. 59, 2129–2139. doi: 10.1002/pol.20210388
    Naga, N., Satoh, M., Magara, T., Ahmed, K., Nakano, T., 2022. Synthesis of porous polymers by means of Michael addition reaction of multifunctional acetoacetate and poly(ethylene glycol) diacrylate. Eur. Polym. J. 162, 110901. doi: 10.1016/j.eurpolymj.2021.110901
    Noordover, B., Liu, W., McCracken, E., DeGooyer, B., Brinkhuis, R., Lunzer, F., 2020. Michael addition curable coatings from renewable resources with enhanced adhesion performance. J. Coat. Technol. Res. 17, 1123–1130. doi: 10.1007/s11998-020-00351-2
    Papageorgiou, G.Z., 2018. Thinking green: sustainable polymers from renewable resources. Polymers. (Basel) 10, 952. doi: 10.3390/polym10090952
    Paramarta, A., Webster, D.C., 2017. The exploration of Michael-addition reaction chemistry to create high performance, ambient cure thermoset coatings based on soybean oil. Prog. Org. Coat. 108, 59–67. doi: 10.1016/j.porgcoat.2017.04.004
    Pellis, A., Malinconico, M., Guarneri, A., Gardossi, L., 2021. Renewable polymers and plastics: performance beyond the green. New. Biotechnol 60, 146–158. doi: 10.1016/j.nbt.2020.10.003
    Perera, M., Yan, J.Y., Xu, L., Yang, M., Yan, Y.J., 2022. Bioprocess development for biolubricant production using non-edible oils, agro-industrial byproducts and wastes. J. Clean. Prod. 357, 131956. doi: 10.1016/j.jclepro.2022.131956
    Polaczek, K., Kaulina, E., Pomilovskis, R., Fridrihsone, A., Kirpluks, M., 2022. Epoxidation of tall oil fatty acids and tall oil fatty acids methyl esters using the SpinChem® rotating bed reactor. J. Polym. Environ. 30, 4774–4786. doi: 10.1007/s10924-022-02556-5
    Pomilovskis, R., Mierina, I., Beneš, H., Trhlíková, O., Abolins, A., Fridrihsone, A., Kirpluks, M., 2022a. The synthesis of bio-based Michael donors from tall oil fatty acids for polymer development. Polymers. (Basel) 14, 4107. doi: 10.3390/polym14194107
    Pomilovskis, R., Mierina, I., Fridrihsone, A., Kirpluks, M., 2022b. Bio-based polymer developments from tall oil fatty acids by exploiting Michael addition. Polymers. (Basel) 14, 4068. doi: 10.3390/polym14194068
    Rahul, R., Kitey, R., 2016. Effect of cross-linking on dynamic mechanical and fracture behavior of epoxy variants. Compos. B. Eng. 85, 336–342. doi: 10.1016/j.compositesb.2015.09.017
    Rengasamy, S., Mannari, V., 2014. UV-curable PUDs based on sustainable acrylated polyol: study of their hydrophobic and oleophobic properties. Prog. Org. Coat. 77, 557–567. doi: 10.1016/j.porgcoat.2013.11.029
    Rosenboom, J.G., Langer, R., Traverso, G., 2022. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137. doi: 10.1038/s41578-021-00407-8
    Salih, A.M., Ahmad, M.B., Ibrahim, N.A., Dahlan, K.Z.H.M., Tajau, R., Mahmood, M.H., Yunus, W.M.Z.W., 2015. Synthesis of radiation curable palm oil-based epoxy acrylate: NMR and FTIR spectroscopic investigations. Molecules 20, 14191–14211. doi: 10.3390/molecules200814191
    Smeu, I., Dobre, A.A., Cucu, E.M., Mustățea, G., Belc, N., Ungureanu, E.L., 2022. Byproducts from the vegetable oil industry: the challenges of safety and sustainability. Sustainability 14, 2039. doi: 10.3390/su14042039
    Sonnenschein, M.F., Werness, J.B., Patankar, K.A., Jin, X., Larive, M.Z., 2016. From rigid and flexible foams to elastomers via Michael addition chemistry. Polymer. (Guildf) 106, 128–139. doi: 10.1016/j.polymer.2016.10.054
    Sternberg, J., Pilla, S., 2020. Materials for the biorefinery: high bio-content, shape memory Kraft lignin-derived non-isocyanate polyurethane foams using a non-toxic protocol. Green. Chem 22, 6922–6935. doi: 10.1039/d0gc01659d
    Su, Y.P., Lin, H., Zhang, S.T., Yang, Z.H., Yuan, T., 2020. One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-curable coatings. Polymers. (Basel) 12, 1165. doi: 10.3390/polym12051165
    Sung, J., Sun, X.S., 2018. Cardanol modified fatty acids from camelina oils for flexible bio-based acrylates coatings. Prog. Org. Coat. 123, 242–253. doi: 10.1016/j.porgcoat.2018.02.008
    Tang, J.J., Zhang, J.S., Lu, J.Y., Huang, J., Zhang, F., Hu, Y., Liu, C.G., An, R.R., Miao, H.C., Chen, Y.Y., Huang, T., Zhou, Y.H., 2020. Preparation and properties of plant-oil-based epoxy acrylate-like resins for UV-curable coatings. Polymers. (Basel) 12, 2165. doi: 10.3390/polym12092165
    Trevino, A.S., Trumbo, D.L., 2002. Acetoacetylated castor oil in coatings applications. Prog. Org. Coat. 44, 49–54. doi: 10.1016/S0300-9440(01)00223-5
    Vevere, L., Fridrihsone, A., Kirpluks, M., Cabulis, U., 2020. A review of wood biomass-based fatty acids and rosin acids use in polymeric materials. Polymers. (Basel) 12, 2706. doi: 10.3390/polym12112706
    Wang, T., Wang, J.L., He, X.F., Cao, Z.Y., Xu, D.D., Gao, F., Zhong, J., Shen, L., 2019. An ambient curable coating material based on the Michael addition reaction of acetoacetylated castor oil and multifunctional acrylate. Coatings 9, 37. doi: 10.3390/coatings9010037
    Witzeman, J.S., Nottingham, W.D., 1991. Transacetoacetylation with tert-butyl acetoacetate: synthetic applications. J. Org. Chem. 56, 1713–1718. doi: 10.1021/jo00005a013
    Wuzella, G., Mahendran, A.R., Müller, U., Kandelbauer, A., Teischinger, A., 2012. Photocrosslinking of an acrylated epoxidized linseed oil: kinetics and its application for optimized wood coatings. J. Polym. Environ 20, 1063–1074. doi: 10.1007/s10924-012-0511-9
    Xia, Y., Larock, R.C., 2010. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green. Chem 12, 1893–1909. doi: 10.1039/c0gc00264j
    Xu, D.D., Cao, Z.Y., Wang, T., Zhong, J., Zhao, J.Z., Gao, F., Luo, X.Y., Fang, Z.L., Cao, J.S., Xu, S.Z., Shen, L., 2019. An ambient-cured coating film obtained via a Knoevenagel and Michael addition reactions based on modified acetoacetylated castor oil prepared by a thiol-ene coupling reaction. Prog. Org. Coat. 135, 510–516. doi: 10.1016/j.porgcoat.2019.06.026
    Zhang, C.Q., Madbouly, S.A., Kessler, M.R., 2015. Biobased polyurethanes prepared from different vegetable oils. ACS. Appl. Mater. Interfaces 7, 1226–1233. doi: 10.1021/am5071333
    Zhang, P., Xin, J.N., Zhang, J.W., 2014. Effects of catalyst type and reaction parameters on one-step acrylation of soybean oil. ACS. Sustainable. Chem. Eng. 2, 181–187. doi: 10.1021/sc400206t
    Zhang, P., Zhang, J.W., 2013. One-step acrylation of soybean oil (SO) for the preparation of SO-based macromonomers. Green. Chem 15, 641–645. doi: 10.1039/c3gc36961g
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (35) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint