Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Shusheng Pang. Recent advances in thermochemical conversion of woody biomass for production of green hydrogen and CO2 capture: A review[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 319-332. doi: 10.1016/j.jobab.2023.06.002
Citation: Shusheng Pang. Recent advances in thermochemical conversion of woody biomass for production of green hydrogen and CO2 capture: A review[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 319-332. doi: 10.1016/j.jobab.2023.06.002

Recent advances in thermochemical conversion of woody biomass for production of green hydrogen and CO2 capture: A review

doi: 10.1016/j.jobab.2023.06.002
More Information
  • Hydrogen as a clean energy carrier has attracted great interests world-wide for substitution of fossil fuels and for abatement of the climate change concerns. However, green hydrogen from renewable resources is less than 0.1% at present in the world hydrogen production and this is largely from water electrolysis which is beneficial only when renewable electricity is used. Hydrogen production from diverse renewable resources is desirable. This review presents recent advances in hydrogen production from woody biomass through biomass steam gasification, producer gas processing and H2/CO2 separation. The producer gas processing includes steam-methane reforming (SMR) and water-gas shift (WGS) reactions to convert CH4 and CO in the producer gas to H2 and CO2. The H2 storage discussed using liquid carrier through hydrogenation is also discussed. The CO2 capture prior to the SMR is investigated to enhance H2 yield in the SMR and the WGS reactions.

     

  • The authors declare no conflict of interest.
    Declaration of Competing Interest
  • loading
  • Abdin, Z., Tang, C.G., Liu, Y., Catchpole, K., 2021. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 24, 102966. doi: 10.1016/j.isci.2021.102966
    Afkhamipour, M., Mofarahi, M., Rezaei, A., Mahmoodi, R., Lee, C.H., 2019. Experimental and theoretical investigation of equilibrium absorption performance of CO2 using a mixed 1-dimethylamino-2-propanol (1DMA2P) and monoethanolamine (MEA) solution. Fuel 256, 115877. doi: 10.1016/j.fuel.2019.115877
    Asadullah, M., 2014. Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew. Sustain. Energy Rev. 40, 118–132. doi: 10.1016/j.rser.2014.07.132
    Baker, E.H., 1962. The calcium oxide-carbon dioxide system in the pressure range 1—300 atmospheres. J. Chem. Soc. 464–470.
    Baraj, E., Ciahotný, K., Hlinčík, T., 2021. The water gas shift reaction: catalysts and reaction mechanism. Fuel 288, 119817. doi: 10.1016/j.fuel.2020.119817
    Boerrigter, H., Paasen, S., Bergman, P., Koenemann, J.W., Emmen, R., 2005a. "OLGA" Tar Removal Technology: Proof-of-Concept (PoC) for Application in Integrated Biomass Gasification Combined Heat and Power (CHP) Systems. Energy Research Centre of the Netherlands (ECN), the Netherlands Report ECN-C-05-009.
    Boerrigter, H., Paasen, S.V., Bergman, P., Konemann, J.W., Emmen, R., 2005b. Tar Removal from Biomass Product Gas; Development and Optimisation of the OLGA Tar Removal Technology. Energy Research Centre of the Netherlands (ECN), the Netherlands.
    Boretti, A., Banik, B.K., 2021. Advances in hydrogen production from natural gas reforming. Adv. Energy Sustain. Res. 2, 2100097. doi: 10.1002/aesr.202100097
    Cao, Y.C., Yang, Y.W., Zhao, X.L., Li, Q.F., 2021. A review of seasonal hydrogen storage multi-energy systems based on temporal and spatial characteristics. J. Renew. Mater. 9, 1823–1842. doi: 10.32604/jrm.2021.015722
    Choi, Y., Stenger, H.G., 2003. Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J. Power Sources 124, 432–439. doi: 10.2514/2.3138
    Conway, W., Bruggink, S., Beyad, Y., Luo, W.L., Melián-Cabrera, I., Puxty, G., Feron, P., 2015. CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes. Chem. Eng. Sci. 126, 446–454. doi: 10.1016/j.ces.2014.12.053
    Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Yip, A.C.K., Pang, S.S., 2021a. Effect of the presence of HCl on simultaneous CO2 capture and contaminants removal from simulated biomass gasification producer gas by CaO-Fe2O3 sorbent in calcium looping cycles. Energies 14, 8167. doi: 10.3390/en14238167
    Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S., 2021. Effect of H2S and NH3 in biomass gasification producer gas on CO2 capture performance of an innovative CaO and Fe2O3 based sorbent. Fuel 295, 120586. doi: 10.1016/j.fuel.2021.120586
    Dashtestani, F., Nusheh, M., Siriwongrungson, V., Hongrapipat, J., Materic, V., Pang, S.S., 2020. CO2 capture from biomass gasification producer gas using a novel calcium and iron-based sorbent through carbonation–calcination looping. Ind. Eng. Chem. Res. 59, 18447–18459. doi: 10.1021/acs.iecr.0c03025
    Drift, A.V.D., Der, C.M.V., Boerrigter, M.H., 2005. MILENA Gasification Technology for High Efficient SNG Production from Biomass. Energy Research Centre of the Netherlands (ECN), the Netherlands.
    Duhoux, B., Mehrani, P., Lu, D.Y., Symonds, R.T., Anthony, E.J., Macchi, A., 2016. Combined calcium looping and chemical looping combustion for post-combustion carbon dioxide capture: process simulation and sensitivity analysis. Energy Technol. 4, 1158–1170. doi: 10.1002/ente.201600024
    Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A., 2002. On the performance of porous vycor membranes for conversion enhancement in the dehydrogenation of methylcyclohexane to toluene. J. Catal. 212, 182–192. doi: 10.1006/jcat.2002.3786
    Florin, N., Fennell, P., 2011. Synthetic CaO-based sorbent for CO2 capture. Energy Procedia 4, 830–838. doi: 10.1016/j.egypro.2011.01.126
    Gianotti, E., Taillades-Jacquin, M., Rozière, J., Jones, D.J., 2018. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 8, 4660–4680. doi: 10.1021/acscatal.7b04278
    Gonzalez-Olmos, R., Gutierrez-Ortega, A., Sempere, J., Nomen, R., 2022. Zeolite versus carbon adsorbents in carbon capture: a comparison from an operational and life cycle perspective. J. CO2 Util. 55, 101791. doi: 10.1016/j.jcou.2021.101791
    Haaf, M., Peters, J., Hilz, J., Unger, A., Ströhle, J., Epple, B., 2020. Combustion of solid recovered fuels within the calcium looping process - experimental demonstration at 1 MWth scale. Exp. Therm. Fluid Sci. 113, 110023. doi: 10.1016/j.expthermflusci.2019.110023
    Hallac, B., Brown, J., Stavitski, E., Harrison, R., Argyle, M., 2018. In situ UV-visible assessment of iron-based high-temperature water-gas shift catalysts promoted with lanthana: an extent of reduction study. Catalysts 8, 63. doi: 10.3390/catal8020063
    Hongrapipat, J., Pang, S.S., Saw, W.L., 2016. Removal of NH3 and H2S from producer gas in a dual fluidised bed steam gasifier by optimisation of operation conditions and application of bed materials. Biomass Convers. Biorefin. 6, 105–113. doi: 10.1007/s13399-015-0167-5
    Hongrapipat, J., Yip, A.C.K., Marshall, A.T., Saw, W.L., Pang, S., 2014. Investigation of simultaneous removal of ammonia and hydrogen sulphide from producer gas in biomass gasification by titanomagnetite. Fuel 135, 235–242. doi: 10.1016/j.fuel.2014.06.037
    Hu, Y.C., Liu, W.Q., Peng, Y., Yang, Y.D., Sun, J., Chen, H.Q., Zhou, Z.J., Xu, M.H., 2017. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique. Fuel Process. Technol. 160, 70–77. doi: 10.1016/j.fuproc.2017.02.016
    Hydrogen Production: Natural gas reforming, 2023. Available at: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming.
    International Energy Agency (IEA), 2021. Global hydrogen review 2021. Available at: https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdf.
    International Energy Agency (IEA), 2022. Global hydrogen review 2022. Available at: https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf.
    Ji, M.D., Wang, J.L., 2021. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrog. Energy 46, 38612–38635. doi: 10.1016/j.ijhydene.2021.09.142
    Joensen, F., Rostrup-Nielsen, J.R., 2002. Conversion of hydrocarbons and alcohols for fuel cells. J. Power Sources 105, 195–201. doi: 10.1016/S0378-7753(01)00939-9
    Juutilainen, S.J., Simell, P.A., Krause, A.O.I., 2006. Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas. Appl. Catal. B 62, 86–92. doi: 10.1016/j.apcatb.2005.05.009
    Khan, F.M., Krishnamoorthi, V., Mahmud, T., 2011. Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications. Chem. Eng. Res. Des. 89, 1600–1608. doi: 10.1016/j.cherd.2010.09.020
    Kostyniuk, A., Grilc, M., Likozar, B., 2019. Catalytic cracking of biomass-derived hydrocarbon tars or model compounds to form biobased benzene, toluene, and xylene isomer mixtures. Ind. Eng. Chem. Res. 58, 7690–7705. doi: 10.1021/acs.iecr.9b01219
    Majchrzak-Kucęba, I., Wawrzyńczak, D., Ściubidło, A., 2022. Experimental investigation into CO2 capture from the cement plant by VPSA technology using zeolite 13X and activated carbon. J. CO2 Util. 61, 102027. doi: 10.1016/j.jcou.2022.102027
    Manovic, V., Anthony, E.J., 2007. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ. Sci. Technol. 41, 1420–1425. doi: 10.1021/es0621344
    Materić, V., Symonds, R., Lu, D., Holt, R., Manović, V., 2014. Performance of hydration reactivated Ca looping sorbents in a pilot-scale, oxy-fired dual fluid bed unit. Energy Fuels 28, 5363–5372. doi: 10.1021/ef501203v
    Mendes, D., Mendes, A., Madeira, L.M., Iulianelli, A., Sousa, J.M., Basile, A., 2010. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors: a review. Asia Pac. J. Chem. Eng. 5, 111–137. doi: 10.1002/apj.364
    Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., Bessarabov, D., 2019. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 33, 2778–2796. doi: 10.1021/acs.energyfuels.9b00296
    Monteiro, J.G.M.S., Majeed, H., Knuutila, H., Svendsen, H.F., 2015. Kinetics of CO2 absorption in aqueous blends of N, N-diethylethanolamine (DEEA) and N-methyl-1, 3-propane-diamine (MAPA). Chem. Eng. Sci. 129, 145–155. doi: 10.1016/j.ces.2015.02.001
    Montenegro Camacho, Y.S., Bensaid, S., Lorentzou, S., Russo, N., Fino, D., 2017. Structured catalytic reactor for soot abatement in a reducing atmosphere. Fuel Process. Technol. 167, 462–473. doi: 10.1016/j.fuproc.2017.07.031
    Murray, L.J., Dincă, M., Long, J.R., 2009. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314. doi: 10.1039/b802256a
    Nakamura, S., Kitano, S., Yoshikawa, K., 2016. Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed. Appl. Energy 170, 186–192. doi: 10.1016/j.apenergy.2016.02.113
    Navas-Anguita, Z., García-Gusano, D., Dufour, J., Iribarren, D., 2020. Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Appl. Energy 259, 114121. doi: 10.1016/j.apenergy.2019.114121
    Newsome, D.S., 1980. The water-gas shift reaction. Catal. Rev. 21, 275–318. doi: 10.1080/03602458008067535
    Niermann, M., Beckendorff, A., Kaltschmitt, M., Bonhoff, K., 2019. Liquid Organic Hydrogen Carrier (LOHC): assessment based on chemical and economic properties. Int. J. Hydrog. Energy 44, 6631–6654 [LinkOut]. doi: 10.1016/j.ijhydene.2019.01.199
    Oda, K., Akamatsu, K., Sugawara, T., Kikuchi, R., Segawa, A., Nakao, S.I., 2010. Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes. Ind. Eng. Chem. Res. 49, 11287–11293. doi: 10.1021/ie101210x
    Oemar, U., Ang, M.L., Hee, W.F., Hidajat, K., Kawi, S., 2014. Perovskite LaxM1−xNi0.8Fe0.2O3 catalyst for steam reforming of toluene: crucial role of alkaline earth metal at low steam condition. Appl. Catal. B 148/149, 231–242. doi: 10.1016/j.apcatb.2013.10.001
    Olabi, A.G., Bahri, A.S., Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H., Ali Abdelkareem, M., 2021. Large-vscale hydrogen production and storage technologies: current status and future directions. Int. J. Hydrog. Energy 46, 23498–23528. doi: 10.1016/j.ijhydene.2020.10.110
    Palma, V., Ruocco, C., Cortese, M., Martino, M., 2019. Recent advances in structured catalysts preparation and use in water-gas shift reaction. Catalysts 9, 991. doi: 10.3390/catal9120991
    Pang, S., Xu, Q., 2010. Drying of woody biomass for bioenergy using packed moving bed dryer: mathematical modeling and optimization. Dry. Technol. 28, 702–709. doi: 10.1080/07373931003799251
    Pang, S.S., 2019. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 37, 589–597. doi: 10.1007/978-3-030-36808-1_64
    Pang, S.S., Mujumdar, A.S., 2010. Drying of woody biomass for bioenergy: drying technologies and optimization for an integrated bioenergy plant. Dry. Technol. 28, 690–701. doi: 10.1080/07373931003799236
    Pellegrini, L.A., De Guido, G., Moioli, S., 2020. Design of the CO2 removal section for PSA tail gas treatment in a hydrogen production plant. Front. Energy Res. 8, 77. doi: 10.3389/fenrg.2020.00077
    Perejón, A., Romeo, L.M., Lara, Y., Lisbona, P., Martínez, A., Valverde, J.M., 2016. The Calcium-Looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Appl. Energy 162, 787–807. doi: 10.1016/j.apenergy.2015.10.121
    Pfeifer, C., Rauch, R., Hofbauer, H., 2004. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind. Eng. Chem. Res. 43, 1634–1640. doi: 10.1021/ie030742b
    Rabou, L., Almansa, G.A., 2015. 500 Hours Producing Bio-SNG from MILENA Gasification Using the ESME System ECN System for MEthanation (ESME): A Novel Technology Successfully Proven. Energy Research Centre of the Netherlands (ECN), the Netherlands.
    Saw, W., McKinnon, H., Gilmour, I., Pang, S.S., 2012. Production of hydrogen-rich syngas from steam gasification of blend of biosolids and wood using a dual fluidised bed gasifier. Fuel 93, 473–478. doi: 10.1016/j.fuel.2011.08.047
    Saw, W.L., Pang, S.S., 2012. The influence of calcite loading on producer gas composition and tar concentration of radiata pine pellets in a dual fluidised bed steam gasifier. Fuel 102, 445–452. doi: 10.1016/j.fuel.2012.07.013
    Saw, W.L., Pang, S.S., 2013. Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: the influence of lignite ratio on producer gas composition and tar content. Fuel 112, 117–124. doi: 10.1016/j.fuel.2013.05.019
    Shayan, E., Zare, V., Mirzaee, I., 2018. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 159, 30–41. doi: 10.1016/j.enconman.2017.12.096
    Siqueira, R.M., Freitas, G.R., Peixoto, H.R., do Nascimento, J.F., Musse, A.P.S., Torres, A.E.B., Azevedo, D.C.S., Bastos-Neto, M., 2017. Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114, 2182–2192. doi: 10.1016/j.egypro.2017.03.1355
    Song, C.S., Pan, W., 2004. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal. Today 98, 463–484. doi: 10.1016/j.cattod.2004.09.054
    Terlouw, T., Bauer, C., McKenna, R., Mazzotti, M., 2022. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583–3602. doi: 10.1039/d2ee01023b
    The World's First Global Hydrogen Supply Chain Demonstration Project, 2017. Available at: https://www.nyk.com/english/news/2017/20170727_01.html.
    Tontiwachwuthikul, P., Meisen, A., Lim, C.J., 1992. CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem. Eng. Sci. 47, 381–390. doi: 10.1016/0009-2509(92)80028-B
    Valente, A., Iribarren, D., Gálvez-Martos, J.L., Dufour, J., 2019. Robust eco-efficiency assessment of hydrogen from biomass gasification as an alternative to conventional hydrogen: a life-cycle study with and without external costs. Sci. Total Environ. 650, 1465–1475. doi: 10.1016/j.scitotenv.2018.09.089
    Valverde, J.M., Sanchez-Jimenez, P.E., Perez-Maqueda, L.A., 2014. Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology. Appl. Energy 136, 347–356. doi: 10.1016/j.apenergy.2014.09.052
    Wang, Y.J., Pang, S.S., 2018a. Investigation of hydrogen sulphide removal from simulated producer gas of biomass gasification by titanomagnetite. Biomass Bioenergy 109, 61–70. doi: 10.1117/12.2302687
    Wang, Y.J., Pang, S.S., 2018b. The effects of temperature and gas species on ammonia removal in the simulated producer gas of biomass gasification by H2-reduced titanomagnetite. Energy Fuels 32, 5134–5144. doi: 10.1021/acs.energyfuels.7b03851
    Wijayanta, A.T., Oda, T., Purnomo, C.W., Kashiwagi, T., Aziz, M., 2019. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J. Hydrog. Energy 44, 15026–15044. doi: 10.1016/j.ijhydene.2019.04.112
    Wu, N., Lan, K., Yao, Y., 2023. An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. Resour. Conserv. Recycl. 188, 106693. doi: 10.1016/j.resconrec.2022.106693
    Xu, Q.X., Pang, S.S., 2008. Mathematical modeling of rotary drying of woody biomass. Dry. Technol. 26, 1344–1350. doi: 10.1080/07373930802331050
    Zeng, X., Ueki, Y., Yoshiie, R., Naruse, I., Wang, F., Han, Z.N., Xu, G.W., 2020. Recent progress in tar removal by char and the applications: a comprehensive analysis. Carbon Resour. Convers. 3, 1–18. doi: 10.1016/j.crcon.2019.12.001
    Zhang, Y.L., Hu, G., Zhang, H., Liu, Q.F., Zhou, J.B., 2021. Thermodynamic analysis and optimization for steam methane reforming hydrogen production system using high temperature gas-cooled reactor pebble-bed module. J. Nucl. Sci. Technol. 58, 1359–1372. doi: 10.1080/00223131.2021.1951863
    Zhang, Y.S., Zhang, S.J., Gossage, J.L., Lou, H.H., Benson, T.J., 2014. Thermodynamic analyses of tri-reforming reactions to produce syngas. Energy Fuels 28, 2717–2726. doi: 10.1021/ef500084m
    Zhang, Z.Y., Pang, S.S., 2019. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier. Renew. Energy 132, 416–424. doi: 10.1016/j.renene.2018.07.144
    Zhao, X.H., Joseph, B., Kuhn, J., Ozcan, S., 2020. Biogas reforming to syngas: a review. iScience 23, 101082. doi: 10.1016/j.isci.2020.101082
    Züttel, A., 2004. Hydrogen storage methods. Naturwissenschaften 91, 157–172. doi: 10.1007/s00114-004-0516-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (259) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return