Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 421-429. doi: 10.1016/j.jobab.2023.06.004
Citation: Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu. Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 421-429. doi: 10.1016/j.jobab.2023.06.004

Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling

doi: 10.1016/j.jobab.2023.06.004
More Information
  • Corresponding author: E-mail address: ccy@njfu.edu.cn (C. Cai); E-mail address: fuyu@njfu.edu.cn (Y. Fu)
  • Available Online: 2023-07-13
  • Publish Date: 2023-10-28
  • Passive cooling strategy shows great potential in mitigating global warming and reducing energy consumption. Because of the high emissivity in the atmospheric transparency window (λ ≈ 8–13 µm), cellulose is considered as a good candidate for radiative cooling. However, traditional cellulose coolers generally show poor solar reflection and can be polluted by dust outside, thereby resulting in poor daytime cooling efficiency. To address these drawbacks, we developed sustainable cellulose nanowhiskers (CNWs)/ZnO composite aerogel films with favorable optical performance, mechanical robustness, and self-cleaning function for efficient daytime radiative cooling, which can be achieved via freeze casting and hot-pressing process. Due to formation of multi-level porous structure and chemical bonds (Si-O-C/Si-O-Si), such aerogel film exhibited high solar reflectance (97%) and high infrared emittance (92.5%). It achieved a sub-ambient temperature drop of 6.9 ℃ under direct sunlight in hot weather. Most importantly, the surface roughness and low surface energy enable cellulose aerogel film hydrophobicity (contact angle = 133°), thereby resulting in an anti-dust function. This work provides insight into the design of sustainable thermal regulating materials to realize carbon neutrality.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of Competing Interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.06.004.
  • loading
  • Ali Badshah, M., Leung, E.M., Liu, P., Strzelecka, A.A., Gorodetsky, A.A., 2022. Scalable manufacturing of sustainable packaging materials with tunable thermoregulability. Nat. Sustain. 5, 434–443. doi: 10.1038/s41893-022-00847-2
    Cai, C.Y., Wei, Z.C., Ding, C.X., Sun, B.J., Chen, W.B., Gerhard, C., Nimerovsky, E., Fu, Y., Zhang, K., 2022. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22, 4106–4114. doi: 10.1021/acs.nanolett.2c00844
    Chen, Y.P., Dang, B.K., Fu, J.Z., Wang, C., Li, C.C., Sun, Q.F., Li, H.Q., 2021. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21, 397–404. doi: 10.1021/acs.nanolett.0c03738
    Gamage, S., Banerjee, D., Alam, M.M., Hallberg, T., Åkerlind, C., Sultana, A., Shanker, R., Berggren, M., Crispin, X., Kariis, H., Zhao, D., Jonsson, M.P., 2021. Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28, 9383–9393. doi: 10.1007/s10570-021-04112-1
    Gamage, S., Kang, E.S.H., Åkerlind, C., Sardar, S., Edberg, J., Kariis, H., Ederth, T., Berggren, M., Jonsson, M.P., 2020. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J. Mater. Chem. C 8, 11687–11694. doi: 10.1039/d0tc01226b
    Hossain, M.M., Gu, M., 2016. Radiative cooling: principles, progress, and potentials. Adv. Sci. 3, 1500360. doi: 10.1002/advs.201500360
    Jaramillo-Fernandez, J., Yang, H., Schertel, L., Whitworth, G.L., Garcia, P.D., Vignolini, S., Sotomayor-Torres, C.M., 2022. Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9, e2104758. doi: 10.1002/advs.202104758
    Li, D., Liu, X., Li, W., Lin, Z.H., Zhu, B., Li, Z.Z., Li, J.L., Li, B., Fan, S.H., Xie, J.W., Zhu, J., 2021. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158. doi: 10.1038/s41565-020-00800-4
    Li, J.L., Liang, Y., Li, W., Xu, N., Zhu, B., Wu, Z., Wang, X.Y., Fan, S.H., Wang, M.H., Zhu, J., 2022. Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8, eabj9756. doi: 10.1126/sciadv.abj9756
    Li, T., Zhai, Y., He, S.M., Gan, W.T., Wei, Z.Y., Heidarinejad, M., Dalgo, D., Mi, R.Y., Zhao, X.P., Song, J.W., Dai, J.Q., Chen, C.J., Aili, A., Vellore, A., Martini, A., Yang, R.G., Srebric, J., Yin, X.B., Hu, L.B., 2019. A radiative cooling structural material. Science 364, 760–763. doi: 10.1126/science.aau9101
    Lin, C.J., Li, Y., Chi, C., Kwon, Y.S., Huang, J.Y., Wu, Z.X., Zheng, J.Z., Liu, G.Z., Tso, C.Y., Chao, C.Y.H., Huang, B.L., 2022. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34, e2109350. doi: 10.1002/adma.202109350
    Liu, B.Y., Xue, C.H., Zhong, H.M., Guo, X.J., Wang, H.D., Li, H.G., Du, M.M., Huang, M.C., Wei, R.X., Song, L.G., Chang, B., Wang, Z.K., 2021. Multi-bioinspired self-cleaning energy-free cooling coatings. J. Mater. Chem. A 9, 24276–24282. doi: 10.1039/d1ta07953k
    Liu, C.H., Feng, S.J., He, M., Chen, X., Shi, S.N., Bu, X.H., Zhou, Y.M., 2022. 3D Porous cellulose/Si-Al inorganic polymer photonic film with precisely structure-enhanced solar reflectivity for daytime radiative cooling. Mater. Today Commun. 31, 103530. doi: 10.1016/j.mtcomm.2022.103530
    Mandal, J., Fu, Y.K., Overvig, A.C., Jia, M.X., Sun, K.R., Shi, N.N., Zhou, H., Xiao, X.H., Yu, N.F., Yang, Y., 2018. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319. doi: 10.1126/science.aat9513
    Peng, Y.C., Fan, L.L., Jin, W.L., Ye, Y.S., Huang, Z.J., Zhai, S., Luo, X., Ma, Y.X., Tang, J., Zhou, J.W., Greenburg, L.C., Majumdar, A., Fan, S.H., Cui, Y., 2022. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5, 339–347.
    Raman, A.P., Anoma, M.A., Zhu, L.X., Rephaeli, E., Fan, S.H., 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544. doi: 10.1038/nature13883
    Shanker, R., Ravi Anusuyadevi, P., Gamage, S., Hallberg, T., Kariis, H., Banerjee, D., Svagan, A.J., Jonsson, M.P., 2022. Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16, 10156–10162. doi: 10.1021/acsnano.1c10959
    Sun, H.D., Chen, Y.W., Zeng, W.C., Tang, F.J., Bi, Y.H., Lu, Q.X., Mondal, A.K., Huang, L.L., Chen, L.H., Li, J.G., 2023a. Solution-processable, robust and sustainable cooler via nano-structured engineering. Carbohydr. Polym. 314, 120948. doi: 10.1016/j.carbpol.2023.120948
    Sun, H.D., Tang, F.J., Chen, Q.F., Xia, L.M., Guo, C.Y., Liu, H., Zhao, X.P., Zhao, D.L., Huang, L.L., Li, J.G., Chen, L.H., 2023b. A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chem. Eng. J. 455, 139786. doi: 10.1016/j.cej.2022.139786
    Tian, Y.P., Shao, H., Liu, X.J., Chen, F.Q., Li, Y.S., Tang, C.Y., Zheng, Y., 2021. Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 13, 22521–22530. doi: 10.1021/acsami.1c04046
    Tu, Y.D., Wang, R.Z., Zhang, Y.N., Wang, J.Y., 2018. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475. doi: 10.1016/j.joule.2018.07.015
    Wang, T., Wu, Y., Shi, L., Hu, X.H., Chen, M., Wu, L.M., 2021. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365. doi: 10.1038/s41467-020-20646-7
    Wang, X., Liu, X.H., Li, Z.Y., Zhang, H.W., Yang, Z.W., Zhou, H., Fan, T.X., 2020. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30, 1907562. doi: 10.1002/adfm.201907562
    Wu, J.R., He, J., Yin, K., Zhu, Z., Xiao, S., Wu, Z.P., Duan, J., 2021. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling. Nano Lett. 21, 4209–4216. doi: 10.1021/acs.nanolett.1c00038
    Zeng, S.N., Pian, S.J., Su, M.Y., Wang, Z.N., Wu, M.Q., Liu, X.H., Chen, M.Y., Xiang, Y.Z., Wu, J.W., Zhang, M.N., Cen, Q.Q., Tang, Y.W., Zhou, X.H., Huang, Z.H., Wang, R., Tunuhe, A., Sun, X.Y., Xia, Z.G., Tian, M.W., Chen, M., Ma, X., Yang, L.Y., Zhou, J., Zhou, H.M., Yang, Q., Li, X., Ma, Y.G., Tao, G.M., 2021. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696. doi: 10.1126/science.abi5484
    Zhai, Y., Ma, Y.G., David, S.N., Zhao, D.L., Lou, R.N., Tan, G., Yang, R.G., Yin, X.B., 2017. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066. doi: 10.1126/science.aai7899
    Zhang, H.W., Ly, K.C.S., Liu, X.H., Chen, Z.H., Yan, M., Wu, Z.L., Wang, X., Zheng, Y.B., Zhou, H., Fan, T.X., 2020. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 117, 14657–14666. doi: 10.1073/pnas.2001802117
    Zhang, K., Lei, X.J., Mo, C.Q., Huang, J., Wang, M., Kang, E.T., Xu, L.Q., 2023. A zero-energy, zero-emission air conditioning fabric. Adv. Sci. 10, e2206925. doi: 10.1002/advs.202206925
    Zhao, H.X., Sun, Q.Q., Zhou, J., Deng, X., Cui, J.X., 2020. Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32, e2000870. doi: 10.1002/adma.202000870
    Zhong, H.M., Li, Y.N., Zhang, P., Gao, S.W., Liu, B.Y., Wang, Y., Meng, T., Zhou, Y.S., Hou, H.W., Xue, C.H., Zhao, Y., Wang, Z.K., 2021. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15, 10076–10083. doi: 10.1021/acsnano.1c01814
    Zhong, S.J., Zhang, J.W., Yuan, S.X., Xu, T.Q., Zhang, X., Xu, L., Zuo, T., Cai, Y., Yi, L.M., 2023. Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling. Chem. Eng. J. 451, 138558. doi: 10.1016/j.cej.2022.138558
    Zhou, K., Li, W., Patel, B.B., Tao, R., Chang, Y.L., Fan, S.H., Diao, Y., Cai, L.L., 2021. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21, 1493–1499. doi: 10.1021/acs.nanolett.0c04810
    Zhou, L., Song, H.M., Liang, J.W., Singer, M., Zhou, M., Stegenburgs, E., Zhang, N., Xu, C., Ng, T., Yu, Z.F., Ooi, B., Gan, Q.Q., 2019. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724. doi: 10.1038/s41893-019-0348-5
    Zhu, W.K., Droguet, B., Shen, Q.C., Zhang, Y., Parton, T.G., Shan, X.W., Parker, R.M., De Volder, M.F.L., Deng, T., Vignolini, S., Li, T., 2022. Structurally colored radiative cooling cellulosic films. Adv. Sci. 9, e2202061. doi: 10.1002/advs.202202061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (315) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return