Citation: | Sariah Abang, Farrah Wong, Rosalam Sarbatly, Jamilah Sariau, Rubiyah Baini, Normah Awang Besar. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 361-387. doi: 10.1016/j.jobab.2023.06.005 |
Abdullah, A.H.D., Putri, O.D., Fikriyyah, A.K., Nissa, R.C., Hidayat, S., Septiyanto, R.F., Karina, M., Satoto, R., 2020. Harnessing the excellent mechanical, barrier and antimicrobial properties of zinc oxide (ZnO) to improve the performance of starch-based bioplastic. Polym. Plast. Technol. Mater. 59, 1259–1267. doi: 10.1080/25740881.2020.1738466
|
Abe, M.M., Martins, J.R., Sanvezzo, P.B., Macedo, J.V., Branciforti, M.C., Halley, P., Botaro, V.R., Brienzo, M., 2021. Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 13, 2484. doi: 10.3390/polym13152484
|
Agustin, Y.E., Padmawijaya, K.S., 2017. Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch. IOP Conf. Ser. Mater. Sci. Eng. 223, 012046. doi: 10.1088/1757-899X/223/1/012046
|
Alabi, O.A., Ologbonjaye, K.I., Awosolu, O., Alalade, O.E., 2019. Public and environmental health effects of plastic wastes disposal, a review. J. Toxicol. Risk Assess. 5, 021.
|
Alexy, P., Bakoš, D., Hanzelová, S., Kukolíková, L., Kupec, J., Charvátová, K., Chiellini, E., Cinelli, P., 2003. Poly(vinyl alcohol)-collagen hydrolysate thermoplastic blends, I. experimental design optimisation and biodegradation behaviour. Polym. Test. 22, 801–809. doi: 10.1016/S0142-9418(03)00016-3
|
Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., Leong, K.H., 2011. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36, 1015–1049. doi: 10.1016/j.progpolymsci.2010.12.002
|
Anugrahwidya, R., Armynah, B., Tahir, D., 2022. Composites bioplastic film for various concentration of zinc oxide (ZnO) nanocrystals towards physical properties for high biodegradability in soil and seawater. J. Polym. Environ. 30, 2589–2601. doi: 10.1007/s10924-021-02363-4
|
Armynah, B., Anugrahwidya, R., Tahir, D., 2022. Composite cassava starch/chitosan/pineapple leaf fiber (PALF)/zinc oxide (ZnO), bioplastics with high mechanical properties and faster degradation in soil and seawater. Int. J. Biol. Macromol. 213, 814–823. doi: 10.1016/j.ijbiomac.2022.06.038
|
Asgher, M., Qamar, S.A., Bilal, M., Iqbal, H.M.N., 2020. Bio-based active food packaging materials, sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 137, 109625. doi: 10.1016/j.foodres.2020.109625
|
Ashter, S.A., 2016. New developments. Introduction to Bioplastics Engineering. Elsevier, Amsterdam, pp. 251–274.
|
Aziz, I.A., Robiah Mohamad, C.W.S., Adollah, R., 2019. Fibre based bioplastic film from Morus sp. (mulberry) leaves for medical purpose. J. Phys. Conf. Ser. 1372, 012069. doi: 10.1088/1742-6596/1372/1/012069
|
Baghi, F., Gharsallaoui, A., Dumas, E., Ghnimi, S., 2022. Advancements in biodegradable active films for food packaging, effects of nano/microcapsule incorporation. Foods 11, 760. doi: 10.3390/foods11050760
|
Chiloeches, A., Cuervo-Rodríguez, R., López-Fabal, F., Fernández-García, M., Echeverría, C., Muñoz-Bonilla, A., 2022. Antibacterial and compostable polymers derived from biobased itaconic acid as environmentally friendly additives for biopolymers. Polym. Test. 109, 107541. doi: 10.1016/j.polymertesting.2022.107541
|
Chowdhury, M.A., Badrudduza, M., Hossain, N., Rana, M.M., 2022a. Development and characterization of natural sourced bioplastic synthesized from tamarind seeds, berry seeds and licorice root. Appl. Surf. Sci. Adv. 11, 100313. doi: 10.1016/j.apsadv.2022.100313
|
Chowdhury, M.A., Hossain, N., Noman, T.I., Hasan, A.L., Shafiul, A., Mohammod Abul, K., 2022b. Biodegradable, physical and microbial analysis of tamarind seed starch infused eco-friendly bioplastics by different percentage of Arjuna powder. Results Eng. 13, 100387. doi: 10.1016/j.rineng.2022.100387
|
Contessa, C.R., da Rosa, G.S., Moraes, C.C., 2021a. New active packaging based on biopolymeric mixture added with bacteriocin as active compound. Int. J. Mol. Sci. 22, 10628. doi: 10.3390/ijms221910628
|
Contessa, C.R., de Souza, N.B., Gonçalo, G.B., de Moura, C.M., da Rosa, G.S., Moraes, C.C., 2021b. Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules 11, 1869. doi: 10.3390/biom11121869
|
Coppola, G., Gaudio, M.T., Lopresto, C.G., Calabro, V., Curcio, S., Chakraborty, S., 2021. Bioplastic from renewable biomass, a facile solution for a greener environment. Earth Syst. Environ. 5, 231–251. doi: 10.1007/s41748-021-00208-7
|
Curran, M.A., 2010. Biobased Materials. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc, New Jersey.
|
Di Bartolo, A., Infurna, G., Dintcheva, N.T., 2021. A review of bioplastics and their adoption in the circular economy. Polymers 13, 1229. doi: 10.3390/polym13081229
|
Diana, K., Marlina, Saleha, S., Helwati, H., 2019. Effect of natural ingredients addition as antimicrobial agents in Dioscoreahispida Dennst starch-based biofilm. IOP Conf. Ser. Earth Environ. Sci. 364, 012006. doi: 10.1088/1755-1315/364/1/012006
|
Eerhart, A.J.J.E., Faaij, A.P.C., Patel, M.K., 2012. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. Sci. 5, 6407–6422. doi: 10.1039/c2ee02480b
|
European Bioplastics, 2021. Bioplastics market development update 2021. Available at:
|
European Bioplastics, 2022a. Fact sheet - what are bioplastics? Available at:
|
European Bioplastics, 2022b. Bioplastics - industry standards & labels. Available at:
|
Fahim, I.S., Chbib, H., Mahmoud, H.M., 2019. The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustain. Chem. Pharm. 12, 100142. doi: 10.1016/j.scp.2019.100142
|
García-Guzmán, L., Cabrera-Barjas, G., Soria-Hernández, C.G., Castaño, J., Guadarrama-Lezama, A.Y., Rodríguez Llamazares, S., 2022. Progress in starch-based materials for food packaging applications. Polysaccharides 3, 136–177. doi: 10.3390/polysaccharides3010007
|
Gea, S., Pasaribu, K.M., Sarumaha, A.A., Rahayu, S., 2022. Cassava starch/bacterial cellulose-based bioplastics with Zanthoxylum acanthopodium. Biodiversitas J. Biol. Divers. 23, 2601–2608.
|
Gironi, F., Piemonte, V., 2011. Bioplastics and petroleum-based plastics, strengths and weaknesses. Energy Sources A 33, 1949–1959. doi: 10.1080/15567030903436830
|
Guzman-Puyol, S., Hierrezuelo, J., Benítez, J.J., Tedeschi, G., Porras-Vázquez, J.M., Heredia, A., Athanassiou, A., Romero, D., Heredia-Guerrero, J.A., 2022. Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging materials. Int. J. Biol. Macromol. 209, 1985–1994. doi: 10.1016/j.ijbiomac.2022.04.177
|
Hajikhani, M., Emam-Djomeh, Z., Askari, G., 2021. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int. J. Biol. Macromol. 172, 143–153. doi: 10.1016/j.ijbiomac.2021.01.051
|
Han, J., Shin, S.H., Park, K.M., Kim, K.M., 2015. Characterization of physical, mechanical, and antioxidant properties of soy protein-based bioplastic films containing carboxymethylcellulose and catechin. Food Sci. Biotechnol. 24, 939–945. doi: 10.1007/s10068-015-0121-0
|
Harini, K., Chandra Mohan, C., Ramya, K., Karthikeyan, S., Sukumar, M., 2018. Effect of Punica granatum peel extracts on antimicrobial properties in walnut shell cellulose reinforced bio-thermoplastic starch films from cashew nut shells. Carbohydr. Polym. 184, 231–242. doi: 10.1016/j.carbpol.2017.12.072
|
Ibrahim, N.I., Shahar, F.S., Sultan, M.T.H., Shah, A.U.M., Safri, S.N.A., Mat Yazik, M.H., 2021. Overview of bioplastic introduction and its applications in product packaging. Coatings 11, 1423. doi: 10.3390/coatings11111423
|
Immonen, K., Willberg-Keyriläinen, P., Ropponen, J., Nurmela, A., Metsä-Kortelainen, S., Kaukoniemi, O.V., Kangas, H., 2021. Thermoplastic cellulose-based compound for additive manufacturing. Molecules 26, 1701. doi: 10.3390/molecules26061701
|
Jamnongkan, T., Kamlong, N., Thiangtrong, N., Mongkholrattanasit, R., 2018. Comparison the physical and antimicrobial properties of poly(lactic acid) film and its composites with ZnO nanoparticles. Key Eng. Mater. 772, 100–104. doi: 10.4028/www.scientific.net/KEM.772.100
|
Jia, F., Wang, J.J., Huang, Y.B., Zhao, J.S., Hou, Y., Hu, S.Q., 2021. Development and characterization of gliadin-based bioplastic films enforced by cinnamaldehyde. J. Cereal Sci. 99, 103208. doi: 10.1016/j.jcs.2021.103208
|
Jiao, J., Zeng, X.B., Huang, X.B., 2020. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT. Adv. Ind. Eng. Polym. Res. 3, 19–26.
|
Jordá-Reolid, M., Ibáñez-García, A., Catani, L., Martínez-García, A., 2022. Development of blends to improve flexibility of biodegradable polymers. Polymers 14, 5223. doi: 10.3390/polym14235223
|
Kaya, M., Akyuz, L., Sargin, I., Mujtaba, M., Salaberria, A.M., Labidi, J., Cakmak, Y.S., Koc, B., Baran, T., Ceter, T., 2017. Incorporation of sporopollenin enhances acid-base durability, hydrophobicity, and mechanical, antifungal and antioxidant properties of chitosan films. J. Ind. Eng. Chem. 47, 236–245. doi: 10.1016/j.jiec.2016.11.038
|
Klinmalai, P., Srisa, A., Laorenza, Y., Katekhong, W., Harnkarnsujarit, N., 2021. Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. LWT 152, 112356. doi: 10.1016/j.lwt.2021.112356
|
Kongkaoroptham, P., Piroonpan, T., Pasanphan, W., 2021. Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydr. Polym. 257, 117610. doi: 10.1016/j.carbpol.2020.117610
|
Kulma, A., Skórkowska-Telichowska, K., Kostyn, K., Szatkowski, M., Skała, J., Drulis-Kawa, Z., Preisner, M., Żuk, M., Szperlik, J., Wang, Y.F., Szopa, J., 2015. New flax producing bioplastic fibers for medical purposes. Ind. Crops Prod. 68, 80–89. doi: 10.1016/j.indcrop.2014.09.013
|
Liptow, C., Tillman, A.M., 2012. A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J. Ind. Ecol. 16, 420–435. doi: 10.1111/j.1530-9290.2011.00405.x
|
López-de-Dicastillo, C., Alonso, J.M., Catalá, R., Gavara, R., Hernández-Muñoz, P., 2010. Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. J. Agric. Food Chem. 58, 10958–10964. doi: 10.1021/jf1022324
|
López-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J.M., Catalá, R., Gavara, R., 2004. Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 20, 357–387. doi: 10.1081/FRI-200033462
|
Luyt, A.S., Malik, S.S., 2019. Can biodegradable plastics solve plastic solid waste accumulation? Plastics to Energy. Elsevier, Amsterdam, pp. 403–423.
|
Markovic, G., Visakh, P.M., 2017. Polymer blends, state of art. Recent Developments in Polymer Macro, Micro and Nano Blends. Elsevier, Amsterdam, pp. 1–15.
|
Martínez, I., Partal, P., García-Morales, M., Guerrero, A., Gallegos, C., 2013. Development of protein-based bioplastics with antimicrobial activity by thermo-mechanical processing. J. Food Eng. 117, 247–254. doi: 10.1016/j.jfoodeng.2013.02.014
|
Merino, D., Bertolacci, L., Paul, U.C., Simonutti, R., Athanassiou, A., 2021. Avocado peels and seeds, processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 13, 38688–38699. doi: 10.1021/acsami.1c09433
|
Merino, D., Quilez-Molina, A.I., Perotto, G., Bassani, A., Spigno, G., Athanassiou, A., 2022. A second life for fruit and vegetable waste, a review on bioplastic films and coatings for potential food protection applications. Green Chem. 24, 4703–4727. doi: 10.1039/d1gc03904k
|
Mohanan, N., Montazer, Z., Sharma, P.K., Levin, D.B., 2020. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 11, 580709. doi: 10.3389/fmicb.2020.580709
|
Mouritz, A.P., 2012. Polymers for aerospace structures. Introduction to Aerospace Materials. Elsevier, Amsterdam, pp. 268–302.
|
Mubofu, E.B., 2016. Castor oil as a potential renewable resource for the production of functional materials. Sustain. Chem. Process. 4, 11. doi: 10.1186/s40508-016-0055-8
|
Muralidharan, V., Arokianathan, M.S., Balaraman, M., Palanivel, S., 2020. Tannery trimming waste based biodegradable bioplastic, facile synthesis and characterization of properties. Polym. Test. 81, 106250. doi: 10.1016/j.polymertesting.2019.106250
|
Nanda, S., Patra, B.R., Patel, R., Bakos, J., Dalai, A.K., 2022. Innovations in applications and prospects of bioplastics and biopolymers, a review. Environ. Chem. Lett. 20, 379–395. doi: 10.1007/s10311-021-01334-4
|
Nasution, H., Julianti, E., Dalimunthe, N.F., Wulandari, G., 2021. The role of betel (Piper betle) leaf extract and glycerol on physical properties of bioplastic based on sago starch. IOP Conf. Ser. Earth Environ. Sci. 912, 012042. doi: 10.1088/1755-1315/912/1/012042
|
Naveena, B., Sharma, A., 2020. Review on properties of bio plastics for packaging applications and its advantages. Int. J. Curr. Microbiol. App. Sci. 9, 1428–1432. doi: 10.20546/ijcmas.2020.905.163
|
Ngo, D.H., Kim, S.K., 2014. Antioxidant effects of chitin, chitosan, and their derivatives. Adv. Food Nutr. Res. 73, 15–31.
|
Notaro, S., Lovera, E., Paletto, A., 2022a. Consumers' preferences for bioplastic products, a discrete choice experiment with a focus on purchase drivers. J. Clean. Prod. 330, 129870. doi: 10.1016/j.jclepro.2021.129870
|
Notaro, S., Lovera, E., Paletto, A., 2022b. Behaviours and attitudes of consumers towards bioplastics, an exploratory study in Italy. J. For. Sci. 68, 121–135. doi: 10.17221/26/2022-jfs
|
Pang, J.F., Zheng, M.Y., Sun, R.Y., Wang, A.Q., Wang, X.D., Zhang, T., 2016. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem. 18, 342–359. doi: 10.1039/C5GC01771H
|
Parameswaranpillai, J., Thomas, S., Grohens, Y., 2014. Polymer blends, state of the art, new challenges, and opportunities. Characterization of Polymer Blends. Wiley-VCH Verlag GmbH & Co, Weinheim, pp. 1–6.
|
Peñas, M.I., Pérez-Camargo, R.A., Hernández, R., Müller, A.J., 2022. A review on current strategies for the modulation of thermomechanical, barrier, and biodegradation properties of poly (butylene succinate) (PBS) and its random copolymers. Polymers 14, 1025. doi: 10.3390/polym14051025
|
Perez-Puyana, V., Felix, M., Romero, A., Guerrero, A., 2017. Development of pea protein-based bioplastics with antimicrobial properties. J. Sci. Food Agric. 97, 2671–2674. doi: 10.1002/jsfa.8051
|
Piemonte, V., Gironi, F., 2011. Land-use change emissions, how green are the bioplastics? Environ. Prog. Sustain. Energy 30, 685–691. doi: 10.1002/ep.10518
|
Piemonte, V., Gironi, F., 2012. Bioplastics and GHGs saving, the land use change (LUC) emissions issue. Energy Sources A 34, 1995–2003. doi: 10.1080/15567036.2010.497797
|
Plastics Europe, 2022. Plastics - the facts 2022. Available at:
|
Quilez-Molina, A.I., Mazzon, G., Athanassiou, A., Perotto, G., 2022. A novel approach to fabricate edible and heat sealable bio-based films from vegetable biomass rich in pectin. Mater. Today Commun. 32, 103871. doi: 10.1016/j.mtcomm.2022.103871
|
Rahman, M.H., Bhoi, P.R., 2021. An overview of non-biodegradable bioplastics. J. Clean. Prod. 294, 126218. doi: 10.1016/j.jclepro.2021.126218
|
Reddy, N., Yang, Y.Q., 2013. Thermoplastic films from plant proteins. J. Appl. Polym. Sci. 130, 729–738. doi: 10.1002/app.39481
|
Robertson, G.L., 2014. Biobased but not biodegradable. Food Technology. Available at:
|
Rulkens, R., Koning, C., 2012. Chemistry and technology of polyamides. Polymer Science, A Comprehensive Reference. Elsevier, Amsterdam, pp. 431–467.
|
Rydz, J., Musioł, M., Kowalczuk, M., 2019. Polymers tailored for controlled (bio)degradation through end-group and in-chain functionalization. Curr. Org. Synth. 16, 950–952. doi: 10.2174/157017941607191226153019
|
Santagata, G., Valerio, F., Cimmino, A., Dal Poggetto, G., Masi, M., di Biase, M., Malinconico, M., Lavermicocca, P., Evidente, A., 2017. Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend, study of a novel bioactive polymeric based system. Eur. Polym. J. 94, 230–247. doi: 10.1016/j.eurpolymj.2017.07.004
|
Schmitz, F., Silva de Albuquerque, M.B., Alberton, M.D., Riegel-Vidotti, I.C., Zimmermann, L.M., 2020. Zein films with ZnO and ZnO, Mg quantum dots as functional nanofillers, new nanocomposites for food package with UV-blocker and antimicrobial properties. Polym. Test. 91, 106709. doi: 10.1016/j.polymertesting.2020.106709
|
Science Museum, 2019. The age of plastic, from Parkesine to pollution. Available at:
|
Shafie, M.H., Samsudin, D., Yusof, R., Gan, C.Y., 2018. Characterization of bio-based plastic made from a mixture of Momordica charantia bioactive polysaccharide and choline chloride/glycerol based deep eutectic solvent. Int. J. Biol. Macromol. 118, 1183–1192. doi: 10.1016/j.ijbiomac.2018.06.103
|
Sisti, L., Totaro, G., Marchese, P., 2016. PBS makes its entrance into the family of biobased plastics. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. John Wiley & Sons, Inc, New Jersey, pp. 225–285.
|
Srisa, A., Harnkarnsujarit, N., 2020. Antifungal films from trans-cinnamaldehyde incorporated poly(lactic acid) and poly(butylene adipate-co-terephthalate) for bread packaging. Food Chem. 333, 127537. doi: 10.1016/j.foodchem.2020.127537
|
Sudhakar, M.P., Venkatnarayanan, S., Dharani, G., 2022. Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. Int. J. Biol. Macromol. 219, 138–149. doi: 10.1016/j.ijbiomac.2022.07.230
|
Sujuthi, R.A.F.M., Liew, K.C., 2016. Properties of bioplastic sheets made from different types of starch incorporated with recycled newspaper pulp. Trans. Sci. Technol. 3, 257–264.
|
Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S.H., Masruchin, N., Gutari, S., Kemala, T., 2021. Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. J. Environ. Health Sci. Eng. 19, 415–425. doi: 10.1007/s40201-021-00614-z
|
Tachibana, Y., Masuda, T., Funabashi, M., Kunioka, M., 2010. Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio. Biomacromolecules 11, 2760–2765. doi: 10.1021/bm100820y
|
Tedeschi, G., Guzman-Puyol, S., Ceseracciu, L., Paul, U.C., Picone, P., di Carlo, M., Athanassiou, A., Heredia-Guerrero, J.A., 2020. Multifunctional bioplastics inspired by wood composition, effect of hydrolyzed lignin addition to xylan-cellulose matrices. Biomacromolecules 21, 910–920. doi: 10.1021/acs.biomac.9b01569
|
Tiseo, I., 2021. Global plastics industry - statistics & facts. Available at:
|
Tran, T.N., Mai, B.T., Setti, C., Athanassiou, A., 2020. Transparent bioplastic derived from CO2-based polymer functionalized with oregano waste extract toward active food packaging. ACS Appl. Mater. Interfaces 12, 46667–46677. doi: 10.1021/acsami.0c12789
|
Tullo, A.H., 2021. The biodegradable polymer PBAT is hitting the big time. Available at:
|
Umiyati, R., Millati, R., Ariyanto, T., Hidayat, C., 2020. Calophyllum inophyllum extract as a natural enhancer for improving physical properties of bioplastics and natural antimicrobial. Biodiversitas 21, 1794–1802.
|
Villanueva, M.P., Gioia, C., Sisti, L., Martí, L., Llorens-Chiralt, R., Verstichel, S., Celli, A., 2022. Valorization of ferulic acid from agro-industrial by-products for application in agriculture. Polymers 14, 2874. doi: 10.3390/polym14142874
|
Vroman, I., Tighzert, L., 2009. Biodegradable polymers. Materials 2, 307–344. doi: 10.3390/ma2020307
|
Wangprasertkul, J., Siriwattanapong, R., Harnkarnsujarit, N., 2021. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control. 123, 107763. doi: 10.1016/j.foodcont.2020.107763
|