Citation: | Mohammed Y. Abdellah, Mustafa Gamal Sadek, Hamzah Alharthi, G.T. Abdel-Jaber, Ahmed H. Backar. Characteristic properties of date-palm fibre/sheep wool reinforced polyester composites[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 430-443. doi: 10.1016/j.jobab.2023.09.003 |
Abdellah, M., Seleem, A., Marzok, W.W., Hashem, A.M., 2019. Tensile and fracture properties of chemically treatment date palm tree fibre reinforced epoxy. World 4, 40.
|
Abdellah, M.Y., 2018. Comparative study on prediction of fracture toughness of CFRP laminates from size effect law of open hole specimen using cohesive zone model. Eng. Fract. Mech. 191, 277–285. doi: 10.1016/j.engfracmech.2017.12.040
|
Abdellah, M.Y., Sadek, M.G., Alharthi, H., Abdel-Jaber, G.T., 2023. Mechanical, thermal, and acoustic properties of natural fibre-reinforced polyester. Proc. Inst. Mech. Eng. E, 095440892311576. doi: 10.1177/09544089231157638
|
Ali, M., Al-Assaf, A.H., Salah, M., 2022. Date palm fiber-reinforced recycled polymer composites: synthesis and characterization. Adv. Polym. Technol. 2022, 1–10.
|
Al-Kaabi, K., Al-Khanbashi, A., Hammami, A., 2005. Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polym. Compos. 26, 604–613. doi: 10.1002/pc.20130
|
Allafi, F., Hossain, M.S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M.I., Shadi, A., 2022. Advancements in applications of natural wool fiber: review. J. Nat. Fibres. 19, 497–512. doi: 10.1080/15440478.2020.1745128
|
Al-Oqla, F.M., Sapuan, S.M., 2014. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 66, 347–354. doi: 10.1016/j.jclepro.2013.10.050
|
Alsaeed, T., Yousif, B.F., Ku, H., 2013. The potential of using date palm fibres as reinforcement for polymeric composites. Mater. Des. 43, 177–184. doi: 10.1016/j.matdes.2012.06.061
|
Alshammari, B.A., Saba, N., Alotaibi, M.D., Alotibi, M.F., Jawaid, M., Alothman, O.Y., 2019. Evaluation of mechanical, physical, and morphological properties of epoxy composites reinforced with different date palm fillers. Materials 12, 2145. doi: 10.3390/ma12132145
|
Alvarez, V.A., Ruscekaite, R.A., Vazquez, A., 2003. Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J. Compos. Mater. 37, 1575–1588. doi: 10.1177/0021998303035180
|
Alyousef, R., Aldossari, K., Ibrahim, O., Mustafa, H., Jabr, A., 2019. Effect of sheep wool fiber on fresh and hardened properties of fiber reinforced concrete. Int. J. Civ. Eng. Technol. 10, 190–199.
|
Awad, S., Hamouda, T., Midani, M., Katsou, E., Fan, M.Z., 2023. Polylactic acid (PLA) reinforced with date palm sheath fiber bio-composites: evaluation of fiber density, geometry, and content on the physical and mechanical properties. J. Nat. Fibres. 20, 2143979. doi: 10.1080/15440478.2022.2143979
|
Bachtiar, D., Sapuan, S.M., Hamdan, M.M., 2008. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater. Des. 29, 1285–1290. doi: 10.1016/j.matdes.2007.09.006
|
Belgacem, C., Serra-Parareda, F., Tarrés, Q., Mutjé, P., Delgado-Aguilar, M., Boufi, S., 2021. The integral utilization of date palm waste to produce plastic composites. Polymers 13, 2335. doi: 10.3390/polym13142335
|
Cao, Y., Shibata, S., Fukumoto, I., 2006. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos. A 37, 423–429. doi: 10.1016/j.compositesa.2005.05.045
|
da Silva, C.F.F.P., Rana, C., Maskell, D., Dengel, A., Ansell, M.P., Ball, R.J., 2016. Influence of eco-materials on indoor air quality. Green Mater. 4, 72–80. doi: 10.1680/jgrma.16.00002
|
Dehury, J., Mohanty, J.R., Nayak, S., Samal, P., Khuntia, S.K., Malla, C., Mohanty, S.D., Mohapatra, J., 2022. Comprehensive characterization of date palm petiole fiber reinforced epoxy composites: effect of fiber treatment and loading on various properties. J. Nat. Fibres. 19, 9457–9470. doi: 10.1080/15440478.2021.1982834
|
Del Rey, R., Uris, A., Alba, J., Candelas, P., 2017. Characterization of sheep wool as a sustainable material for acoustic applications. Materials 10, 1277. doi: 10.3390/ma10111277
|
Elbadry, E.A., 2014. Agro-residues: surface treatment and characterization of date palm tree fiber as composite reinforcement. J. Compos. 2014, 1–8. doi: 10.1155/2014/189128
|
El-Shekeil, Y.A., Sapuan, S.M., Khalina, A., Zainudin, E.S., Al-Shuja'a, O.M., 2012. Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite. J. Therm. Anal. Calorim. 109, 1435–1443. doi: 10.1007/s10973-012-2258-x
|
Gheith, M.H., Abdel Aziz, M., Ghori, W., Saba, N., Asim, M., Jawaid, M., Alothman, O.Y., 2019. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J. Mater. Res. Technol. 8, 853–860. doi: 10.1016/j.jmrt.2018.06.013
|
Gholami, M., Ahmadi, M.S., Ali Tavanaie, M., Khajeh Mehrizi, M., 2018. Effect of oxygen plasma treatment on tensile strength of date palm fibers and their interfacial adhesion with epoxy matrix. Sci. Eng. Compos. Mater. 25, 993–1001. doi: 10.1515/secm-2017-0102
|
Ghori, W., Saba, N., Jawaid, M., Asim, M., 2018. A review on date palm (phoenix dactylifera) fibers and its polymer composites. IOP Conf. Ser. 368, 012009. doi: 10.1088/1757-899x/368/1/012009
|
Haris, N.I.N., Hassan, M.Z., Ilyas, R.A., Suhot, M.A., Sapuan, S.M., Dolah, R., Mohammad, R., Asyraf, M.R.M., 2022. Dynamic mechanical properties of natural fiber reinforced hybrid polymer composites: a review. J. Mater. Res. Technol. 19, 167–182. doi: 10.1016/j.jmrt.2022.04.155
|
Hosseinkhani, H., Euring, M., Kharazipour, A., 2014. Utilization of date palm (Phoenix dactylifera L. ) pruning residues as raw material for MDF manufacturing. J. Mater. Sci. Res. 4: 46.
|
Hussein, S.M., 2020. Incorporation of palm fiber to enhance the mechanical properties of epoxy. Iraqi J. Sci., 1960–1970. doi: 10.24996/ijs.2020.61.8.13
|
Ilyas R.A., Aisyah H.A., Nordin A.H., Ngadi N., Zuhri M.Y.M., Asyraf M.R.M., Sapuan S.M., Zainudin E.S., Zainudin E.S., Sharma S., Abral H., Asrofi M., Syafri E., Sari N.H., Rafidah M., Zakaria S.Z.S., Razman M.R., Majid N.A., Ramli Z., Azmi A., Bangar S.P., Ibrahim R., 2022. Natural-fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications. Polym. Basel 14, 874. doi: 10.3390/polym14050874
|
Ismail, A.S., Jawaid, M., Naveen, J., 2019. Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites. Materials 12, 2094. doi: 10.3390/ma12132094
|
Jayaraman, K., 2003. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos. Sci. Technol. 63, 367–374. doi: 10.1016/S0266-3538(02)00217-8
|
Khatun M., . A., Sultana, S., Nur H, P., Chowdhury AM, S., 2019. Physical, mechanical, thermal and morphological analysis of date palm mat (DPM) and Palmyra palm fruit (PPF) fiber reinforced high density polyethylene hybrid composites. Adv. Mater. Sci. 4: 1–6. doi: 10.1109/iccit48885.2019.9038563
|
Mansour, E., Curling, S., Stéphan, A., Ormondroyd, G., 2016. Absorption of volatile organic compounds by different wool types. Green Mater. 4, 1–7. doi: 10.1680/jgrma.15.00031
|
Millington, K.R., Rippon, J.A., 2017. Wool As a High-Performance Fiber. Structure and Properties of High-Performance Fibers. Amsterdam: Elsevier, 367–408.
|
Mirski, R., Dziurka, D., Trociński, A., 2018. Insulation properties of boards made from long hemp (Cannabis sativa L. ) fibers. Bioresources 13, 6591–6599. doi: 10.15376/biores.13.3.6591-6599
|
Misra, M., Pandey, J., Mohanty, A., 2015. Biocomposites: Design and Mechanical Performance. London: Woodhead Publishing.
|
Mohamed, A.F., Hassan, M.K., Alshamrani, A.H., Azam, S.A., Abdellah, M.Y., Backar, A.H., 2022. Assessment of the wear behavior and surface roughness of epoxy/date seed's powder bio-composites. Am. J. Mech. Eng. 10, 41–48.
|
Mohanty, A.K., Misra, M., Hinrichsen, G., 2000. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 276/277, 1–24.
|
Morris, A., Spilsbury, K., 2016. Commercialisation of a natural material–wool: a bio-based PCM. Green Mater. 4, 89–97. doi: 10.1680/jgrma.16.00001
|
Mousa, S., Alomari, A.S., Vantadori, S., Alhazmi, W.H., Abd-Elhady, A.A., Sallam, H.E. D M., 2022. Mechanical behavior of epoxy reinforced by hybrid short palm/glass fibers. Sustainability 14, 9425. doi: 10.3390/su14159425
|
Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., El Bouari, A., 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF-Polyurethane composite. S Afr N J. Chem. Eng. 23, 116–123.
|
Refaai, M.R.A., Reddy, R.M., Reddy, M.I., Khan, B.S.H., Nagaraju, V., Kumar, S.P., 2022. Investigation on physical and mechanical characteristics of date palm fiber reinforced aliphatic epoxy hybrid composites. Adv. Polym. Technol. 2022, 1–11.
|
Rokbi, M., Osmani, H., Imad, A., Benseddiq, N., 2011. Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Eng. 10, 2092–2097.
|
Safri, S.N.A., Sultan, M.T.H., Jawaid, M., Jayakrishna, K., 2018. Impact behaviour of hybrid composites for structural applications: a review. Compos. B 133, 112–121.
|
Sangeetha, V.H., Deka, H., Varghese, T.O., Nayak, S.K., 2018. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 39, 81–101. doi: 10.1002/pc.23906
|
Sawpan, M.A., Pickering, K.L., Fernyhough, A., 2013. Analysis of mechanical properties of hemp fibre reinforced unsaturated polyester composites. J. Compos. Mater. 47, 1513–1525. doi: 10.1177/0021998312449028
|
Schiavoni, S., D׳Alessandro, F., Bianchi, F., Asdrubali, F., 2016. Insulation materials for the building sector: a review and comparative analysis. Renew. Sustain. Energy Rev. 62, 988–1011.
|
Shamsi, M., Mazloumzadeh, S., 2009. Some physical and mechanical properties of date palm trees related to cultural operations industry mechanization. J. Agric. Technol. 5, 17–31.
|
Supian, A.B.M., Jawaid, M., Rashid, B., Fouad, H., Saba, N., Dhakal, H.N., Khiari, R., 2021. Mechanical and physical performance of date palm/bamboo fibre reinforced epoxy hybrid composites. J. Mater. Res. Technol. 15, 1330–1341.
|
Trigui, A., Karkri, M., Peña, L., Boudaya, C., Candau, Y., Bouffi, S., Vilaseca, F., 2013. Thermal and mechanical properties of maize fibres–high density polyethylene biocomposites. J. Compos. Mater. 47, 1387–1397. doi: 10.1177/0021998312447648
|
Tusnim, J., Jenifar, N.S., Hasan, M., 2018. Properties of jute and sheep wool fiber reinforced hybrid polypropylene composites. IOP Conf. Ser. 438, 012029. doi: 10.1088/1757-899x/438/1/012029
|
Waheedullah Ghori, S., Srinivasa Rao, G., 2021. Fiber loading of date palm and kenaf reinforced epoxy composites: tensile, impact and morphological properties. J. Renew. Mater. 9, 1283–1292. doi: 10.32604/jrm.2021.014987
|
Yousif, B.F., Shalwan, A., Chin, C.W., Ming, K.C., 2012. Flexural properties of treated and untreated kenaf/epoxy composites. Mater. Des. 40, 378–385.
|
Żak, M., Kobielarz, M., 2010. The mechanical properties of fibres and yarns in different group of animals. 9th Youth Symp. Exp. Solid Mech. YSESM 2010, 219–221.
|