Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Eva Pasquier, Robert Skunde, Jost Ruwoldt. Influence of temperature and pressure during thermoforming of softwood pulp[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 408-420. doi: 10.1016/j.jobab.2023.10.001
Citation: Eva Pasquier, Robert Skunde, Jost Ruwoldt. Influence of temperature and pressure during thermoforming of softwood pulp[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 408-420. doi: 10.1016/j.jobab.2023.10.001

Influence of temperature and pressure during thermoforming of softwood pulp

doi: 10.1016/j.jobab.2023.10.001
More Information
  • Corresponding author: E-mail address: jost.ruwoldt@rise-pfi.no (J. Ruwoldt)
  • Available Online: 2023-10-11
  • Publish Date: 2023-10-28
  • In this study, the influence of thermoforming conditions on the resulting material properties was investigated, which aimed at developing advanced wood-fiber-based materials for the replacement of fossil plastics. Two bleached softwood pulps were studied, i.e., northern bleached softwood Kraft pulp (NBSK) and chemi-thermomechanical softwood pulp (CTMP). The thermoforming conditions were varied between 2–100 MPa and 150–200 ℃, while pressing sheets of 500 g/m2 for 10 min to represent thin-walled packaging more closely. As our results showed, the temperature had a more pronounced effect on the CTMP substrates than on the Kraft pulp. This was explained by the greater abundance of lignin and hemicelluloses, while fibrillar dimensions and the fines content may play a role in addition. Moreover, the CTMP exhibited an optimum in terms of tensile strength at intermediate thermoforming pressure. This effect was attributed to two counteracting effects: 1) Improved fiber adhesion due to enhanced densification, and 2) embrittlement caused by the loss of extensibility. High temperatures likely softened the lignin, enabling fiber collapse and a tighter packing. For the Kraft substrates, the tensile strength increased linearly with density. Both pulps showed reduced wetting at elevated thermoforming temperature and pressure, which was attributed to hornification and densification effects. Here, the effect of temperature was again more pronounced for CTMP than for the Kraft fibers. It was concluded that the thermoforming temperature and pressure strongly affected the properties of the final material. The chemical composition of the pulps will distinctly affect their response to thermoforming, which could be useful for tailoring cellulose-based replacements for packaging products.

     

  • There are no conflicts to declare.
    Declaration of Competing Interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.10.001.
  • loading
  • Back, E.L., Salmen, N.L., 1982. Glass transitions of wood components hold implications for molding and pulping processes. Tappi 65, 107–110.
    Ball, R., McIntosh, A.C., Brindley, J., 2004. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust. Theory Model. 8, 281–291. doi: 10.1088/1364-7830/8/2/005
    Bjork, E., Bouveng, M., Vomhoff, H., Engstrand, P., 2021. Use of fines-enriched chemical pulp to increase CTMP strength. Tappi J. 20, 255–263. doi: 10.32964/tj20.4.255
    Bouajila, J., Dole, P., Joly, C., Limare, A., 2006. Some laws of a lignin plasticization. J. Appl. Polym. Sci. 102, 1445–1451. doi: 10.1002/app.24299
    Burhenne, L., Messmer, J., Aicher, T., Laborie, M.P., 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 101, 177–184. doi: 10.1016/j.jaap.2013.01.012
    Chinga-Carrasco, G., 2009. Exploring the multi-scale structure of printing paper: a review of modern technology. J. Microsc. 234, 211–242. doi: 10.1111/j.1365-2818.2009.03164.x
    Curling, S.F., Laflin, N., Davies, G.M., Ormondroyd, G.A., Elias, R.M., 2017. Feasibility of using straw in a strong, thin, pulp moulded packaging material. Ind. Crops Prod. 97, 395–400. doi: 10.1016/j.indcrop.2016.12.042
    Debnath, M., Sarder, R., Pal, L., Hubbe, M.A., 2022. Molded pulp products for sustainable packaging: production rate challenges and product opportunities. BioResources 17, 3810–3870. doi: 10.15376/biores.17.2.debnath
    Dislaire, C., Seantier, B., Muzy, M., Grohens, Y., 2021. Mechanical and hygroscopic properties of molded pulp products using different wood-based cellulose fibers. Polymers 13, 3225. doi: 10.3390/polym13193225
    Funaoka, M., Kako, T., Abe, I., 1990. Condensation of lignin during heating of wood. Wood Sci. Technol. 24, 277–288. doi: 10.1007/BF01153560
    Hatakeyama, H., Tsujimoto, Y., Zarubin, M.J., Krutov, S.M., Hatakeyama, T., 2010. Thermal decomposition and glass transition of industrial hydrolysis lignin. J. Therm. Anal. Calorim. 101, 289–295. doi: 10.1007/s10973-010-0698-8
    Joelsson, T., Pettersson, G., Norgren, S., Svedberg, A., Höglund, H., Engstrand, P., 2020. High strength paper from high yield pulps by means of hot-pressing. Nord. Pulp Pap. Res. J. 35, 195–204. doi: 10.1515/npprj-2019-0087
    Joseleau, J.P., Chevalier-Billosta, V., Ruel, K., 2012. Interaction between microfibrillar cellulose fines and fibers: influence on pulp qualities and paper sheet properties. Cellulose 19, 769–777. doi: 10.1007/s10570-012-9693-5
    Joseph, P., Opedal, M.T., Moe, S.T., 2023. The O-factor: using the H-factor concept to predict the outcome of organosolv pretreatment. Biomass Convers. Biorefin. 13, 6727–6736. doi: 10.1007/s13399-021-01667-8
    Laukala, T., Ovaska, S.S., Tanninen, P., Pesonen, A., Jordan, J., Backfolk, K., 2019. Influence of pulp type on the three-dimensional thermomechanical convertibility of paperboard. Cellulose 26, 3455–3471. doi: 10.1007/s10570-019-02294-3
    Lindström, T., Ström, G., 2022. Bulking of cellulose fibres–a review. Nord. Pulp Pap. Res. J. 37, 192–204. doi: 10.1515/npprj-2021-0062
    Liu, C., Luan, P.C., Li, Q., Cheng, Z., Sun, X., Cao, D.X., Zhu, H.L., 2020. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter 3, 2066–2079. doi: 10.1016/j.matt.2020.10.004
    Liu, T.H., Wang, Y., Zhou, J., Li, M.Y., Yue, J.Q., 2021. Preparation of molded fiber products from hydroxylated lignin compounded with lewis acid-modified fibers its analysis. Polymers 13, 1349. doi: 10.3390/polym13091349
    Mboowa, D., 2021. A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Convers. Bioref. 1–12.
    Nilsson, H., Galland, S., Larsson, P.T., Gamstedt, E.K., Nishino, T., Berglund, L.A., Iversen, T., 2010. A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos. Sci. Technol. 70, 1704–1712. doi: 10.1016/j.compscitech.2010.06.016
    Nimz, H.H., 1984. Wood-chemistry, ultrastructure, reactions. Holz Roh Werkst. 42, 314. doi: 10.1007/BF02608943
    Norgren, S., Pettersson, G., Höglund, H., 2018. Strong paper from spruce CTMP-Part Ⅱ: effect of pressing at nip press temperatures above the lignin softening temperature. Nord. Pulp Pap. Res. J. 33, 142–149. doi: 10.1515/npprj-2018-3009
    Oliaei, E., Berthold, F., Berglund, L.A., Lindström, T., 2021a. Eco-friendly high-strength composites based on hot-pressed lignocellulose microfibrils or fibers. ACS Sustainable Chem. Eng. 9, 1899–1910. doi: 10.1021/acssuschemeng.0c08498
    Oliaei, E., Lindström, T., Berglund, L.A., 2021b. Sustainable development of hot-pressed all-lignocellulose composites-comparing wood fibers and nanofibers. Polymers 13, 2747. doi: 10.3390/polym13162747
    Pettersson, G., Norgren, S., Engstrand, P., Rundlöf, M., Höglund, H., 2021. Aspects on bond strength in sheet structures from TMP and CTMP–a review. Nord. Pulp Pap. Res. J. 36, 177–213. doi: 10.1515/npprj-2021-0009
    Ruwoldt, J., Tanase Opedal, M., 2022. Green materials from added-lignin thermoformed pulps. Ind. Crops Prod. 185, 115102. doi: 10.1016/j.indcrop.2022.115102
    Salmén, L., 1993. Response of paper properties to changes in moisture content and temperature. Products Papermak. 1, 369.
    Schenker, U., Chardot, J., Missoum, K., Vishtal, A., Bras, J., 2021. Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydr. Polym. 254, 117248. doi: 10.1016/j.carbpol.2020.117248
    Semple, K.E., Zhou, C.L., Rojas, O.J., Nkeuwa, W.N., Dai, C.P., 2022. Moulded pulp fibers for disposable food packaging: a state-of-the-art review. Food Packag. Shelf Life 33, 100908. doi: 10.1016/j.fpsl.2022.100908
    Shen, D.K., Gu, S., 2009. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 100, 6496–6504. doi: 10.1016/j.biortech.2009.06.095
    Sixta, H., 2006. Handbook of Pulp. Wiley, Germany.
    Sluiter, A., Ruiz, B.H.R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2008. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Denver.
    Tanase-Opedal, M., Ruwoldt, J., 2022. Organosolv lignin as a green sizing agent for thermoformed pulp products. ACS Omega 7, 46583–46593. doi: 10.1021/acsomega.2c05416
    Wang, H.Q., Wang, J.L., Si, S.R., Wang, Q., Li, X.S., Wang, S.F., 2021. Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength. Ind. Crops Prod. 170, 113756. doi: 10.1016/j.indcrop.2021.113756
    Wang, Q.L., Xiao, S.L., Shi, S.Q., Cai, L.P., 2018. Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Sci. Rep. 8, 955. doi: 10.1038/s41598-018-19623-4
    Winter, A., Gindl-Altmutter, W., Mandlez, D., Bauer, W., Eckhart, R., Leitner, J., Veigel, S., 2021. Reinforcement effect of pulp fines and microfibrillated cellulose in highly densified binderless paperboards. J. Clean. Prod. 281, 125258. doi: 10.1016/j.jclepro.2020.125258
    Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C.G., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788. doi: 10.1016/j.fuel.2006.12.013
    Zhang, Y.L., Duan, C., Bokka, S.K., He, Z.B., Ni, Y.H., 2022. Molded fiber and pulp products as green and sustainable alternatives to plastics: a mini review. J. Bioresour. Bioprod. 7, 14–25. doi: 10.1016/j.jobab.2021.10.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (115) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return