Volume 8 Issue 4
Oct.  2023
Turn off MathJax
Article Contents
Labeeb Ali, Toyin Shittu, Mohamed Shafi Kuttiyathil, Ayesha Alam, Muhammad Z. Iqbal, Abbas Khaleel, Kaushik Sivaramakrishnan, Mohammednoor Altarawneh. Catalytic upgrading of bio-oil from halophyte seeds into transportation fuels[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 444-460. doi: 10.1016/j.jobab.2023.10.002
Citation: Labeeb Ali, Toyin Shittu, Mohamed Shafi Kuttiyathil, Ayesha Alam, Muhammad Z. Iqbal, Abbas Khaleel, Kaushik Sivaramakrishnan, Mohammednoor Altarawneh. Catalytic upgrading of bio-oil from halophyte seeds into transportation fuels[J]. Journal of Bioresources and Bioproducts, 2023, 8(4): 444-460. doi: 10.1016/j.jobab.2023.10.002

Catalytic upgrading of bio-oil from halophyte seeds into transportation fuels

doi: 10.1016/j.jobab.2023.10.002
More Information
  • Corresponding author: E-mail address: mn.Altarawneh@uaeu.ac.ae (M. Altarawneh)
  • Available Online: 2023-10-11
  • Publish Date: 2023-10-28
  • Because of socioeconomic considerations, wide-scale production of biofuel necessitates the utilization of nonedible biomass feedstock that does not compete for land and fresh water resources. In this regard, Salicornia bigelovii (SB) is the most investigated halophyte species. The high oil content in SB seeds has sparked mounting research that aims to utilize SB as an industrial crop in the production of bio-oil, particularly in coastal areas where these plants thrive. However, the oil extracted from the pyrolysis of raw SB seeds is largely dominated by oxygenated fatty acids, most notably 9, 12-octadecadienoic acid and 9, 17-octadecadienal, typical to that of other crops. The pyrolysate bio-oil of the raw SB seeds exhibited a relative yield of oxygenated compounds that decreased from 57.05 % at 200 ℃ to 9.81 % at 500 ℃, and the relative yield of nitrogenated compounds increased from 4.86 % at 200 ℃ to 21.97 % at 500 ℃. To improve the quality of the produced bio-oil, herein we investigated the catalytic hydrodeoxygenation (HDO) of the fragments that were produced from the thermal degradation of SB seeds. A 5 %Ni–CeO2 catalyst was prepared and characterized by a wide array of methods X-ray diffraction, X-ray photoelectron spectroscopy, temperature programmed reduction, scanning electron microscope, Brunauer-Emmett-Teller analysis, and thermogravimetric analyzer. The catalytic run was executed between 200 and 500 ℃ in a flow reactor. The deployed catalytic methodology displayed a profound HDO capacity. At 400 ℃, for instance, the gas chromatography mass spectroscopy (GC–MS) detected loads of paraffin and aromatic compounds exists at appreciable values of 48.0 % and 28.5 %, respectively. With a total relative yield of 43.2 % (at 400 ℃), C8–C15 species (i.e., jet fuel fractions) were the most abundant species in the upgraded SB bio-oil. The release of H2, CO, CO2, and CH4 was analyzed qualitatively and quantitatively using gas chromatography thermal conductivity detector and Fourier infrared spectroscopic analysis. When the Ni–CeO2 catalyst was utilized, a complete deoxygenated bio-oil was obtained from SB seeds using the surface-assisted HDO reaction. On the basis of the elemental analysis, the biochar's hydrogen and oxygen contents were found to decrease significantly. Density functional theory computations showed mechanisms for reactions that underpinned the experimentally observed hydrodeoxygenation process. Outcomes presented herein shall be instrumental toward the effective utilization of halophyte in the production of commercial transportation fuels.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of Competing Interest
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.10.002.
  • loading
  • Abideen, Z., Ansari, R., Gul, B., Khan, M.A., 2012. The place of halophytes in Pakistan's biofuel industry. Biofuels 3, 211–220. doi: 10.4155/bfs.11.158
    Ali, L., Kuttiyathil, M.S., Altarawneh, M., 2022a. Catalytic upgrading of the polymeric constituents in Covid-19 masks. J. Environ. Chem. Eng. 10, 106978. doi: 10.1016/j.jece.2021.106978
    Ali, L., Kuttiyathil, M.S., Altarawneh, M., 2022b. Oxidative and pyrolytic decomposition of an evaporated stream of 2, 4, 6-tribromophenol over hematite: a prevailing scenario during thermal recycling of e-waste. Waste Manag. 154, 283–292. doi: 10.1016/j.wasman.2022.10.017
    Ali, L., Mousa, H.A., Al-Harahsheh, M., Al-Zuhair, S., Abu-Jdayil, B., Al-Marzouqi, M., Altarawneh, M., 2022c. Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. Waste Manag. 137, 283–293. doi: 10.1016/j.wasman.2021.11.025
    Aljaziri, J., Gautam, R., Alturkistani, S., Fiene, G.M., Tester, M., Sarathy, S.M., 2022. On the effects of CO2 atmosphere in the pyrolysis of Salicornia bigelovii. Bioresour. Technol. Rep. 17, 100950. doi: 10.1016/j.biteb.2022.100950
    Aljaziri, J., Gautam, R., Sarathy, S.M., 2023. Interactions in co-pyrolysis of Salicornia bigelovii and heavy fuel oil. Sustain. Energy Fuels 7, 4213–4228. doi: 10.1039/d3se00063j
    Arabiourrutia, M., Bensidhom, G., Bolaños, M., Ben Hassen Trabelsi, A., Olazar, M., 2022. Catalytic pyrolysis of date palm seeds on HZSM-5 and dolomite in a pyroprobe reactor in line with GC/MS. Biomass Convers. Biorefin., 1–20.
    Arhin, S.G., Cesaro, A., Di Capua, F., Esposito, G., 2023. Recent progress and challenges in biotechnological valorization of lignocellulosic materials: towards sustainable biofuels and platform chemicals synthesis. Sci. Total Environ. 857, 159333. doi: 10.1016/j.scitotenv.2022.159333
    Bañuelos, J.A., Velázquez-Hernández, I., Guerra-Balcázar, M., Arjona, N., 2018. Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source. Renew. Energy 123, 125–134. doi: 10.1016/j.renene.2018.02.031
    Bi, H.B., Wang, C.X., Lin, Q.Z., Jiang, X.D., Jiang, C.L., Bao, L., 2021. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FT-IR. Sci. Total Environ. 751, 142293. doi: 10.1016/j.scitotenv.2020.142293
    Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J.J., Grigore, M.N., Perea-Flores, M.J., 2021. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 191, 104606. doi: 10.1016/j.envexpbot.2021.104606
    Centi, G., 2020. Smart catalytic materials for energy transition. Smart Mat. 1, e1005.
    Chang, K., Zhang, H.C., Cheng, M.J., Lu, Q., 2020. Application of ceria in CO2 conversion catalysis. ACS Catal. 10, 613–631. doi: 10.1021/acscatal.9b03935
    Chen, D.D., Ma, Q.H., Wei, L.F., Li, N.X., Shen, Q.H., Tian, W., Zhou, J.C., Long, J.Y., 2018. Catalytic hydroliquefaction of rice straw for bio-oil production using Ni/CeO2 catalysts. J. Anal. Appl. Pyrolysis 130, 169–180. doi: 10.1016/j.jaap.2018.01.012
    Christiansen, A.H.C., Lyra, D.A., Jørgensen, H., 2021. Increasing the value of Salicornia bigelovii green biomass grown in a desert environment through biorefining. Ind. Crops Prod. 160, 113105. doi: 10.1016/j.indcrop.2020.113105
    Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C., 2005. First principles methods using CASTEP. Z. Für Kristallogr. Cryst. Mater. 220, 567–570. doi: 10.1524/zkri.220.5.567.65075
    Cybulska, I., Chaturvedi, T., Alassali, A., Brudecki, G.P., Brown, J.J., Sgouridis, S., Thomsen, M.H., 2014. Characterization of the chemical composition of the halophyte Salicornia bigelovii under cultivation. Energy Fuels 28, 3873–3883. doi: 10.1021/ef500478b
    Dandamudi, K.P.R., Muhammed Luboowa, K., Laideson, M., Murdock, T., Seger, M., McGowen, J., Lammers, P.J., Deng, S.G., 2020. Hydrothermal liquefaction of Cyanidioschyzon merolae and Salicornia bigelovii Torr. : the interaction effect on product distribution and chemistry. Fuel 277, 118146. doi: 10.1016/j.fuel.2020.118146
    Ding, Y.M., Ezekoye, O.A., Lu, S.X., Wang, C.J., 2016. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers. Manage. 120, 370–377. doi: 10.1016/j.enconman.2016.05.007
    Dzidzienyo, P., Bastidas-Oyanedel, J.R., Schmidt, J., 2018. Pyrolysis kinetics of the arid land biomass halophyte Salicornia bigelovii and Phoenix dactylifera using thermogravimetric analysis. Energies 11, 2283. doi: 10.3390/en11092283
    Folayan, A.J., Anawe, P.A.L., Ayeni, A.O., 2019. Synthesis and characterization of Salicornia bigelovii and Salicornia brachiata halophytic plants oil extracted by supercritical CO2 modified with ethanol for biodiesel production via enzymatic transesterification reaction using immobilized Candida antarctica lipase catalyst in tert-butyl alcohol (TBA) solvent. Cogent Eng. 6: 1625847. doi: 10.1080/23311916.2019.1625847
    Gao, X.Y., Wang, Z.Y., Huang, Q.Y., Jiang, M.L., Askari, S., Dewangan, N., Kawi, S., 2022. State-of-art modifications of heterogeneous catalysts for CO2 methanation - Active sites, surface basicity and oxygen defects. Catal. Today 402, 88–103. doi: 10.1016/j.cattod.2022.03.017
    Garcia, J.J., Brunkan, N.M., Jones, W.D., 2002. Cleavage of carbon-carbon bonds in aromatic nitriles using nickel(0). J. Am. Chem. Soc. 124, 9547–9555. doi: 10.1021/ja0204933
    Gerward, L., Staun Olsen, J., Petit, L., Vaitheeswaran, G., Kanchana, V., Svane, A., 2005. Bulk modulus of CeO2 and PrO2—An experimental and theoretical study. J. Alloys Compd. 400, 56–61. doi: 10.1016/j.jallcom.2005.04.008
    Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., Andzelm, J., 2003. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250–258. doi: 10.1016/S0927-0256(03)00111-3
    Guo, D.G., Zhang, X.Y., Shao, H.B., Bai, Z.K., Chu, L.Y., Shangguan, T.L., Yan, K., Zhang, L.H., Xu, G., Sun, J.N., 2011. Energy plants in the coastal zone of China: category, distribution and development. Renew. Sustain. Energy Rev. 15, 2014–2020. doi: 10.1016/j.rser.2010.09.034
    Holl, E., Steinbrenner, J., Merkle, W., Krümpel, J., Lansing, S., Baier, U., Oechsner, H., Lemmer, A., 2022. Two-stage anaerobic digestion: state of technology and perspective roles in future energy systems. Bioresour. Technol. 360, 127633. doi: 10.1016/j.biortech.2022.127633
    Iaccarino, A., Gautam, R., Sarathy, S.M., 2021. Bio-oil and biochar production from halophyte biomass: effects of pre-treatment and temperature on Salicornia bigelovii pyrolysis. Sustain. Energy Fuels 5, 2234–2248. doi: 10.1039/d0se01664k
    Iisa, K., Kim, Y., Orton, K.A., Robichaud, D.J., Katahira, R., Watson, M.J., Wegener, E.C., Nimlos, M.R., Schaidle, J.A., Mukarakate, C., Kim, S., 2020. Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen. Green Chem. 22, 2403–2418. doi: 10.1039/c9gc03408k
    Ismail, O., Ali, L., Shafi Kuttiyathil, M., Iqbal, M.Z., Khaleel, A., Altarawneh, M., 2023. Formation of value-added products from the pyrolysis of date pits: a combined experimental-DFT approach. Biomass Bioenergy 174, 106822. doi: 10.1016/j.biombioe.2023.106822
    Izadi, Y., Nabipour, M., Ranjbar, G.H., 2022. Growth, development, and flowering responses of Salicornia genotypes to photoperiod. Int. J. Veg. Sci. 28, 40–58. doi: 10.1080/19315260.2020.1825149
    Jabeen, S., Zeng, Z., Altarawneh, M., Gao, X.P., Saeed, A., Dlugogorski, B.Z., 2019. Thermal decomposition of model compound of algal biomass. Int. J. Chem. Kinet. 51, 696–710. doi: 10.1002/kin.21301
    Jin, W., Pastor-Pérez, L., Villora-Picó, J.J., Sepúlveda-Escribano, A., Gu, S., Reina, T.R., 2019. Investigating new routes for biomass upgrading: "H2-free" hydrodeoxygenation using Ni-based catalysts. ACS Sustain. Chem. Eng. 7, 16041–16049. doi: 10.1021/acssuschemeng.9b02712
    Kim, S., Kwon, E.E., Kim, Y.T., Jung, S., Kim, H.J., Huber, G.W., Lee, J., 2019. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 21, 3715–3743. doi: 10.1039/c9gc01210a
    Kim, S.B., Eissa, A.A.S., Kim, M.J., Goda, E.S., Youn, J.R., Lee, K., 2022. Sustainable synthesis of a highly stable and coke-free Ni@CeO2 catalyst for the efficient carbon dioxide reforming of methane. Catalysts 12, 423. doi: 10.3390/catal12040423
    Kirkok, S.K., Kibet, J.K., Okanga, F., Kinyanjui, T., Nyamori, V., 2019. Mechanistic formation of hazardous molecular heterocyclic amines from high temperature pyrolysis of model biomass materials: cellulose and tyrosine. BMC Chem. 13, 126. doi: 10.1186/s13065-019-0644-1
    Kumar, G., Shekh, A., Jakhu, S., Sharma, Y., Kapoor, R., Sharma, T.R., 2020. Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 8, 914. doi: 10.3389/fbioe.2020.00914
    Lang, M., Li, H., 2022. Toward value-added arenes from lignin-derived phenolic compounds via catalytic hydrodeoxygenation. ACS Sustain. Chem. Eng. 10, 13208–13243. doi: 10.1021/acssuschemeng.2c04266
    Lee, S.M., Lee, Y.H., Moon, D.H., Ahn, J.Y., Nguyen, D.D., Chang, S.W., Kim, S.S., 2019. Reaction mechanism and catalytic impact of Ni/CeO2– catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 58, 8656–8662. doi: 10.1021/acs.iecr.9b00983
    Li, G., Ma, S.H., Ye, F., Luo, Y.W., Fan, S.S., Lang, X.M., Wang, Y.H., Zhou, L., 2021. Permeation characteristics of a T-type zeolite membrane for bio-oil pervaporation dehydration. Microporous Mesoporous Mater. 315, 110884. doi: 10.1016/j.micromeso.2021.110884
    Lin, B.W., Zhou, J.S., Qin, Q.W., Song, X., Luo, Z.Y., 2019. Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: a TG-FT-IR investigation. J. Anal. Appl. Pyrolysis 144, 104718. doi: 10.1016/j.jaap.2019.104718
    Lin, S.X., Hao, Z.W., Shen, J.D., Chang, X., Huang, S.Y., Li, M.S., Ma, X.B., 2021. Enhancing the CO2 methanation activity of Ni/CeO2 via activation treatment-determined metal-support interaction. J. Energy Chem. 59, 334–342. doi: 10.1016/j.jechem.2020.11.011
    Liu, W.J., Li, W.W., Jiang, H., Yu, H.Q., 2017. Fates of chemical elements in biomass during its pyrolysis. Chem. Rev. 117, 6367–6398. doi: 10.1021/acs.chemrev.6b00647
    Lustemberg, P.G., Mao, Z.T., Salcedo, A., Irigoyen, B., Ganduglia-Pirovano, M.V., Campbell, C.T., 2021. Nature of the active sites on Ni/CeO2 catalysts for methane conversions. ACS Catal. 11, 10604–10613. doi: 10.1021/acscatal.1c02154
    Lyra, D.A., Raman, A., Hozayen, A., Zaaboul, R., Abou-Zaid, F.O., El-Naggar, A., Mansoor, S., Mahmoudi, H., Ammar, K., 2022. Evaluation of Salicornia bigelovii germplasm for food use in Egypt and the United Arab Emirates based on agronomic traits and nutritional composition. Plants 11, 2653. doi: 10.3390/plants11192653
    Ma, J.B., Zhang, M.R., Xiao, X.L., You, J.J., Wang, J.R., Wang, T., Yao, Y.N., Tian, C.Y., 2013. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS ONE 8, e65877. doi: 10.1371/journal.pone.0065877
    Mäki-Arvela, P., Martínez-Klimov, M., Murzin, D.Y., 2021. Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel 306, 121673. doi: 10.1016/j.fuel.2021.121673
    Makkar, P., Ghosh, N.N., 2021. A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Adv. 11, 27897–27924. doi: 10.1039/d1ra04876g
    Makkawi, Y., El Sayed, Y., Lyra, D.A., Pour, F.H., Khan, M., Badrelzaman, M., 2021. Assessment of the pyrolysis products from halophyte Salicornia bigelovii cultivated in a desert environment. Fuel 290, 119518. doi: 10.1016/j.fuel.2020.119518
    Makkawi, Y., El Sayed, Y., Salih, M., Nancarrow, P., Banks, S., Bridgwater, T., 2019. Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renew. Energy 143, 719–730. doi: 10.1016/j.renene.2019.05.028
    Meng, A.H., Zhou, H., Qin, L., Zhang, Y.G., Li, Q.H., 2013. Quantitative and kinetic TG-FT-IR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis 104, 28–37. doi: 10.1016/j.jaap.2013.09.013
    Miran, H.A., Jiang, Z.T., Altarawneh, M., Veder, J.P., Zhou, Z.F., Rahman, M.M., Jaf, Z.N., Dlugogorski, B.Z., 2018. Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films. Ceram. Int. 44, 16450–16458. doi: 10.1016/j.ceramint.2018.06.059
    Mishra, K., Singh Siwal, S., Kumar Saini, A., Thakur, V.K., 2023. Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production. Fuel 332, 126169. doi: 10.1016/j.fuel.2022.126169
    Monção, M., Wretborn, T., Rova, U., Matsakas, L., Christakopoulos, P., 2022. Salicornia dolichostachya organosolv fractionation: towards establishing a halophyte biorefinery. RSC Adv. 12, 28599–28607. doi: 10.1039/d2ra04432c
    Mondal, T., Pant, K.K., Dalai, A.K., 2015. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int. J. Hydrog. Energy 40, 2529–2544. doi: 10.1016/j.ijhydene.2014.12.070
    Mousa, N.A., Ali, L., Kuttiyathil, M.S., Mousa, H.A., Altarawneh, M., 2022. Exploring the potential of hematite as a debromination agent for 2, 4, 6-tribromophenol. Chem. Eng. J. Adv. 11, 100334. doi: 10.1016/j.ceja.2022.100334
    Mukarakate, C., Iisa, K., Habas, S.E., Orton, K.A., Xu, M.Z., Nash, C., Wu, Q.Y., Happs, R.M., French, R.J., Kumar, A., Miller, E.M., Nimlos, M.R., Schaidle, J.A., 2022. Accelerating catalyst development for biofuel production through multiscale catalytic fast pyrolysis of biomass over Mo2C. Chem. Catal. 2, 1819–1831. doi: 10.1016/j.checat.2022.06.004
    Murugan, R., Vijayaprasath, G., Mahalingam, T., Ravi, G., 2016. Enhancement of room temperature ferromagnetic behavior of rf sputtered Ni–CeO2 thin films. Appl. Surf. Sci. 390, 583–590. doi: 10.1016/j.apsusc.2016.08.166
    Nan, H.Y., Xiao, Z.Y., Zhao, L., Yang, F., Xu, H.C., Xu, X.Y., Qiu, H., 2020. Nitrogen transformation during pyrolysis of various N-containing biowastes with participation of mineral calcium. ACS Sustain. Chem. Eng. 8, 12197–12207. doi: 10.1021/acssuschemeng.0c03773
    Ni, Z.N., Djitcheu, X., Gao, X.X., Wang, J., Liu, H.M., Zhang, Q.J., 2022. Effect of preparation methods of CeO2 on the properties and performance of Ni/CeO2 in CO2 reforming of CH4. Sci. Rep. 12, 5344. doi: 10.1038/s41598-022-09291-w
    Nolte, M.W., Shanks, B.H., 2017. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis. Energy Technol. 5, 7–18. doi: 10.1002/ente.201600096
    Ojha, D.K., Viju, D., Vinu, R., 2021. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions. Energy Convers. Manag. X 10, 100071.
    Oluwoye, I., Altarawneh, M., Gore, J., Dlugogorski, B.Z., 2015. Oxidation of crystalline polyethylene. Combust. Flame 162, 3681–3690. doi: 10.1016/j.combustflame.2015.07.007
    Özsin, G., Pütün, A.E., 2019. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process. Energy Convers. Manag. 182, 143–153. doi: 10.1016/j.enconman.2018.12.060
    Panahi-Kalamuei, M., Alizadeh, S., Mousavi-Kamazani, M., Salavati-Niasari, M., 2015. Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J. Ind. Eng. Chem. 21, 1301–1305. doi: 10.1016/j.jiec.2014.05.046
    Perdew, J.P., Wang, Y., 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter 45, 13244–13249. doi: 10.1103/PhysRevB.45.13244
    Resende, K.A., Braga, A.H., Noronha, F.B., Hori, C.E., 2019. Hydrodeoxygenation of phenol over Ni/Ce1-xNbxO2 catalysts. Appl. Catal. B 245, 100–113. doi: 10.1016/j.apcatb.2018.12.040
    Riley, C., Zhou, S.L., Kunwar, D., De La Riva, A., Peterson, E., Payne, R., Gao, L.Y., Lin, S., Guo, H., Datye, A., 2018. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 140, 12964–12973. doi: 10.1021/jacs.8b07789
    Ruddy, D.A., Schaidle, J.A., Wang, J., Moens, L., Hensley, J.E., 2014. Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis": catalyst development through the study of model compounds. Green Chem. 16, 454–490. doi: 10.1039/C3GC41354C
    Safdari, M.S., Rahmati, M., Amini, E., Howarth, J.E., Berryhill, J.P., Dietenberger, M., Weise, D.R., Fletcher, T.H., 2018. Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the Southern United States. Fuel 229, 151–166. doi: 10.1016/j.fuel.2018.04.166
    Santoyo-Castelazo, E., Santoyo, E., Zurita-García, L., Camacho Luengas, D.A., Solano-Olivares, K., 2023. Life cycle assessment of bioethanol production from sugarcane bagasse using a gasification conversion process: bibliometric analysis, systematic literature review and a case study. Appl. Therm. Eng. 219, 119414. doi: 10.1016/j.applthermaleng.2022.119414
    Seber, G., Escobar, N., Valin, H., Malina, R., 2022. Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils. Renew. Sustain. Energy Rev. 170, 112945. doi: 10.1016/j.rser.2022.112945
    Shittu, T., Khaleel, A., Polychronopoulou, K., Altarawneh, M., 2022. Functionalized ceria–niobium supported nickel catalysts for gas phase semi-hydrogenation of phenylacetylene to styrene. Catal. Sci. Technol. 12, 7133–7150. doi: 10.1039/d2cy01193j
    Singha, R.K., Shukla, A., Yadav, A., Sivakumar Konathala, L.N., Bal, R., 2017. Effect of metal-support interaction on activity and stability of Ni–CeO2 catalyst for partial oxidation of methane. Appl. Catal. B 202, 473–488. doi: 10.1016/j.apcatb.2016.09.060
    Tada, S., Nagase, H., Fujiwara, N., Kikuchi, R., 2021. What are the best active sites for CO2 methanation over Ni/CeO2? Energy Fuels 35, 5241–5251. doi: 10.1021/acs.energyfuels.0c04238
    Wang, C., Kant Bhatia, S., Manigandan, S., Yang, R., Ali Alharbi, S., Nasif, O., Brindhadevi, K., Zhou, B., 2022. Comparative assessment of waste cooking, chicken waste and waste tire biodiesel blends on performance and emission characteristics. Fuel 320, 123859. doi: 10.1016/j.fuel.2022.123859
    Wang, Y., Chung, S.H., 2019. Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74, 152–238. doi: 10.1016/j.pecs.2019.05.003
    Wang, Y.Q., Puggioni, D., Rondinelli, J.M., 2019. Assessing exchange-correlation functional performance in the chalcogenide lacunar spinels GaM4Q8 (M=Mo, V, Nb, Ta; Q=S, Se). Phys. Rev. B 100, 115149. doi: 10.1103/PhysRevB.100.115149
    Wang, Y.Y., Zeng, Y., Fan, L.L., Wu, Q.H., Zhang, L.T., Xiong, J.Y., Zhang, J.H., Liao, R., Cobb, K., Liu, Y.H., Ruan, R., Wang, Y.P., 2023. Pyrolysis of different types of waste cooking oil in the presence/absence HZSM-5 catalyst: influence of feedstock characteristics on aromatic formation. Fuel 351, 128937. doi: 10.1016/j.fuel.2023.128937
    Xu, S.Y., Chen, J.F., Peng, H.Y., Leng, S.Q., Li, H., Qu, W.Q., Hu, Y.C., Li, H.L., Jiang, S.J., Zhou, W.G., Leng, L.J., 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291, 120128. doi: 10.1016/j.fuel.2021.120128
    Yu, Y., Chan, Y.M., Bian, Z.F., Song, F.J., Wang, J., Zhong, Q., Kawi, S., 2018. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of NiCeO2 catalyst: kinetics and DRIFTS studies. Int. J. Hydrog. Energy 43, 15191–15204. doi: 10.1016/j.ijhydene.2018.06.090
    Zamin, M., Fahad, S., Khattak, A.M., Adnan, M., Wahid, F., Raza, A., Wang, D.P., Saud, S., Noor, M., Bakhat, H.F., Mubeen, M., Hammad, H.M., Soliman, M.H., Elkelish, A.A., Riaz, M., Nasim, W., 2020. Developing the first halophytic turfgrasses for the urban landscape from native Arabian desert grass. Environ. Sci. Pollut. Res. Int. 27, 39702–39716. doi: 10.1007/s11356-019-06218-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (129) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return