Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Christian F. Varela, L.C. Moreno-Aldana, Yazmin Yaneth Agámez-Pertuz. Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from corn cob: Efficiency, selectivity and mechanism[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 58-73. doi: 10.1016/j.jobab.2023.10.003
Citation: Christian F. Varela, L.C. Moreno-Aldana, Yazmin Yaneth Agámez-Pertuz. Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from corn cob: Efficiency, selectivity and mechanism[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 58-73. doi: 10.1016/j.jobab.2023.10.003

Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from corn cob: Efficiency, selectivity and mechanism

doi: 10.1016/j.jobab.2023.10.003
More Information
  • Corresponding author: E-mail address: colivera@unillanos.edu.co (C.F. Varela)
  • Available Online: 2023-10-29
  • Publish Date: 2024-02-01
  • The occurrence of pharmaceuticals in water bodies and drinking water poses risks for the environment and human health, thus it is necessary to study methodologies that allow the efficient removal of these contaminants. In this work, corn cob-derived biochar was obtained by ZnCl2-activation, and subsequent carbonization at 700 ℃. The effect of contact time, temperature, pH, and initial concentration on the adsorption capacity of acetaminophen (ACE) and amoxicillin (AMX) was determined through batch experiments. In addition, the kinetics, isotherms, and thermodynamics parameters were determined. The activated biochar exhibited a maximum adsorption capacity of 332.08 mg/g for ACE and 175.86 mg/g for AMX. The adsorption kinetics and adsorption isotherm of ACE corresponded to the pseudo-second order and Langmuir model, respectively. Meanwhile, pseudo-first-order kinetics and the Freundlich isotherm model were well-fitted to AMX adsorption. The ACE and AMX co-adsorption had a synergistic effect on AMX but an antagonistic effect on ACE removal, achieving a maximum adsorption capacity of 193.51 and 184.58 mg/g, respectively. On the other hand, fixed-bed column experiments showed that the adsorption capacity depends on the influent concentration, and the breakthrough curve fits the Thomas and Yoon-Nelson model. The mechanism adsorption studies showed that surface interactions (hydrogen bonding formation and n-π interactions) are the main driving forces for the adsorption process, and pore filling is the rate-limiting step. In this way, the prepared biochar exhibits a high potential for the adsorption of pharmaceutical compounds from water.

     

  • Declaration of Competing Interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2023.10.003
  • loading
  • Agbovi, H.K., Wilson, L.D., 2021. Adsorption Processes in Biopolymer Systems: Fundamentals to Practical Applications. Natural Polymers-Based Green Adsorbents for Water Treatment. Amsterdam: Elsevier, 1–51.
    Aksu, Z., Tunç, Ö., 2005. Application of biosorption for penicillin G removal: comparison with activated carbon. Process. Biochem. 40, 831–847. doi: 10.1016/j.procbio.2004.02.014
    Al-Khateeb, L.A., Almotiry, S., Abdel Salam, M., 2014. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J. 248, 191–199. doi: 10.1016/j.cej.2014.03.023
    Bilgin, N., Bulut, E., Sabah, E., 2023. Mechanistic insight into amoxicillin removal by natural sepiolite. Int. J. Environ. Sci. Technol. 20, 8897–8912. doi: 10.1007/s13762-023-04988-5
    Cabrita, I., Ruiz, B., Mestre, A.S., Fonseca, I.M., Carvalho, A.P., Ania, C.O., 2010. Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chem. Eng. J. 163, 249–255. doi: 10.1016/j.cej.2010.07.058
    Cestari, A.R., Vieira, E.F.S., Vieira, G.S., Almeida, L.E., 2007. Aggregation and adsorption of reactive dyes in the presence of an anionic surfactant on mesoporous aminopropyl silica. J. Colloid Interface Sci. 309, 402–411. doi: 10.1016/j.jcis.2006.11.049
    Chakhtouna, H., Benzeid, H., Zari, N., el kacem Qaiss, A., Bouhfid, R., 2021. Functional CoFe2O4-modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Sep. Purif. Technol. 266, 118592. doi: 10.1016/j.seppur.2021.118592
    Chang, S.Q., Fu, H.L., Wu, X., Liu, C.C., Li, Z., Dai, Y.D., Zhang, H.Q., 2018. Batch and fixed-bed column studies for selective removal of cesium ions by compressible Prussian blue/polyurethane sponge. RSC Adv. 8, 36459–36467. doi: 10.1039/c8ra07665k
    Chen, L., Bai, B., 2013. Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres. Ind. Eng. Chem. Res. 52, 15568–15577. doi: 10.1021/ie4020364
    Chen, S., Qin, C.X., Wang, T., Chen, F.Y., Li, X.L., Hou, H.B., Zhou, M., 2019. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 285, 62–74. doi: 10.1080/09064710.2018.1500635
    Chowdhury, Z.Z., Hamid, S.B.A., Zain, S.M., 2014. Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu(Ⅱ) cations using lignocellulosic wastes. BioResources 10: 732–749.
    Coimbra, R.N., Escapa, C., Otero, M., 2021. Removal of pharmaceuticals from water: conventional and alternative treatments. Water 13, 487. doi: 10.3390/w13040487
    Dhiman, A., Kushwaha, S., Ramanathan, A.L., 2021. Occurrence and fate of emerging contaminants in groundwater. Legacy, Pathogenic and Emerging Contaminants in the Environment. London: CRC Press, 3–22. doi: 10.1201/9781003157465-2
    Doğan, M., Özdemir, Y., Alkan, M., 2007. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigm. 75, 701–713. doi: 10.1016/j.dyepig.2006.07.023
    Egbedina, A.O., Ugwuja, C.G., Dare, P.A., Sulaiman, H.D., Olu-Owolabi, B.I., Adebowale, K.O., 2023. CTAB-activated carbon from peanut husks for the removal of antibiotics and antibiotic-resistant bacteria from water. Environ. Process. 10, 20. doi: 10.1007/s40710-023-00636-9
    El Saied, M., Shaban, S.A., Mostafa, M.S., El Naga, A.O.A., 2022. Efficient adsorption of acetaminophen from the aqueous phase using low-cost and renewable adsorbent derived from orange peels. Biomass Convers. Biorefin., 1–18.
    Fatta-Kassinos, D., Meric, S., Nikolaou, A., 2011. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal. Bioanal. Chem. 399, 251–275. doi: 10.1007/s00216-010-4300-9
    García-Reiriz, A., Damiani, P.C., Olivieri, A.C., 2007. Different strategies for the direct determination of amoxicillin in human urine by second-order multivariate analysis of kinetic-spectrophotometric data. Talanta 71, 806–815. doi: 10.1016/j.talanta.2006.05.050
    Iqbal, M., Shahid, M., Ali, Z., Nazir, A., Alqahtani, F.O., Zaheer, M., Alshawwa, S.Z., Iqbal, D.N., Younas, U., Bukhari, A., 2023. Paracetamol and amoxicillin adsorptive removal from aqueous solution using phosphoric acid activated-carbon. Z. Für Phys. Chem. 237, 257–271. doi: 10.1515/zpch-2021-3149
    Ji, R.T., Wu, Y.R., Bian, Y.R., Song, Y., Sun, Q., Jiang, X., Zhang, L.J., Han, J.G., Cheng, H., 2021. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. J. Hazard. Mater. 407, 124785. doi: 10.1016/j.jhazmat.2020.124785
    Jiang, X.Y., Tan, X.P., Cheng, J., Haddix, M.L., Cotrufo, M.F., 2019. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations. Geoderma 333, 99–107. doi: 10.1016/j.geoderma.2018.07.016
    Jjagwe, J., Olupot, P.W., Menya, E., Kalibbala, H.M., 2021. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J. Bioresour. Bioprod. 6, 292–322. doi: 10.1016/j.jobab.2021.03.003
    Katibi, K.K., Yunos, K.F., Man, H.C., Aris, A.Z., Mohd Nor, M.Z., Azis, R.S., 2021. An insight into a sustainable removal of bisphenol A from aqueous solution by novel palm kernel shell magnetically induced biochar: synthesis, characterization, kinetic, and thermodynamic studies. Polymers 13, 3781. doi: 10.3390/polym13213781
    Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253. doi: 10.1021/es9031419
    Kerkez-Kuyumcu, Ö., Bayazit, Ş. S., Abdel Salam, M., 2016. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem. 36, 198–205. doi: 10.1016/j.jiec.2016.01.040
    Lach, J., 2019. Adsorption of chloramphenicol on commercial and modified activated carbons. Water 11, 1141. doi: 10.3390/w11061141
    Lee, C.H., Lee, M.G., Hu, C.G., Kam, S.K., 2022. Adsorption characteristics analysis of trimethoprim in aqueous solution by magnetic activated carbon prepared from waste Citrus peel using box-behnken design. J. Environ. Sci. Int. 31, 691–706. doi: 10.5322/jesi.2022.31.8.691
    Lima, D.R., Hosseini-Bandegharaei, A., Thue, P.S., Lima, E.C., de Albuquerque, Y.R.T., dos Reis, G.S., Umpierres, C.S., Dias, S.L.P., Tran, H.N., 2019. Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf. A 583, 123966. doi: 10.1016/j.colsurfa.2019.123966
    Limousy, L., Ghouma, I., Ouederni, A., Jeguirim, M., 2017. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ. Sci. Pollut. Res. Int. 24, 9993–10004. doi: 10.1007/s11356-016-7404-8
    Liu, X.Q., Chen, W.J., Jiang, H., 2017. Facile synthesis of Ag/Ag3PO4/AMB composite with improved photocatalytic performance. Chem. Eng. J. 308, 889–896. doi: 10.1007/s11581-016-1890-z
    Liu, Z.Y., Sun, Y., Xu, X.R., Meng, X.H., Qu, J.B., Wang, Z., Liu, C.Y., Qu, B., 2020. Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(Ⅱ) from aqueous solution. Bioresour. Technol. 306, 123154. doi: 10.1016/j.biortech.2020.123154
    Ma, H.F., Xu, Z.G., Wang, W.Y., Gao, X., Ma, H.F., 2019. Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution. RSC Adv. 9, 39282–39293. doi: 10.1039/c9ra07943b
    Ma, Y.F., Chen, S.Y., Qi, Y., Yang, L., Wu, L., He, L.Y., Li, P., Qi, X.B., Gao, F., Ding, Y.Z., Zhang, Z.L., 2022. An efficient, green and sustainable potassium hydroxide activated magnetic corn cob biochar for imidacloprid removal. Chemosphere 291, 132707. doi: 10.1016/j.chemosphere.2021.132707
    Maged, A., Kharbish, S., Ismael, I.S., Bhatnagar, A., 2020. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ. Sci. Pollut. Res. Int. 27, 32980–32997. doi: 10.1007/s11356-020-09267-1
    McDonald-Wharry, J., Manley-Harris, M., Pickering, K., 2013. Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon 59, 383–405. doi: 10.1016/j.carbon.2013.03.033
    Minaei, S., Zoroufchi Benis, K., McPhedran, K.N., Soltan, J., 2023. Evaluation of a ZnCl2-modified biochar derived from activated sludge biomass for adsorption of sulfamethoxazole. Chem. Eng. Res. Des. 190, 407–420. doi: 10.1016/j.cherd.2022.12.038
    Mujtaba, G., Hayat, R., Hussain, Q., Ahmed, M., 2021. Physio-chemical characterization of biochar, compost and co-composted biochar derived from green waste. Sustainability 13, 4628. doi: 10.3390/su13094628
    Natarajan, R., Venkataraman, S., Rajendran, D.S., Tamilselvam, B., Zaveri, H., Jeyachandran, N., Prashar, H., Vaidyanathan, V.K., 2022. Adsorption performance of magnetic mesoporous silica microsphere support toward the remediation of acetaminophen from aqueous solution. J. Water Process. Eng. 48, 102835. doi: 10.1016/j.jwpe.2022.102835
    Neogi, S., Sharma, V., Khan, N., Chaurasia, D., Ahmad, A., Chauhan, S., Singh, A., You, S.M., Pandey, A., Bhargava, P.C., 2022. Sustainable biochar: a facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 293, 133474. doi: 10.1016/j.chemosphere.2021.133474
    Nguyen, D.T., Tran, H.N., Juang, R.S., Dat, N.D., Tomul, F., Ivanets, A., Woo, S.H., Hosseini-Bandegharaei, A., Nguyen, V.P., Chao, H.P., 2020. Adsorption process and mechanism of acetaminophen onto commercial activated carbon. J. Environ. Chem. Eng. 8, 104408. doi: 10.1016/j.jece.2020.104408
    Obey, G., Adelaide, M., Ramaraj, R., 2022. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 7, 109–115.
    Patel, M., Kumar, R., Pittman, C.U. Jr, Mohan, D., 2021. Ciprofloxacin and acetaminophen sorption onto banana peel biochars: environmental and process parameter influences. Environ. Res. 201, 111218. doi: 10.1016/j.envres.2021.111218
    Peng, X.M., Hu, F.P., Lam, F.L.Y., Wang, Y.J., Liu, Z.M., Dai, H.L., 2015. Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. J. Colloid Interface Sci. 460, 349–360. doi: 10.1016/j.jcis.2015.08.050
    Phong Vo, H.N., Le, G.K., Hong Nguyen, T.M., Bui, X.T., Nguyen, K.H., Rene, E.R., Vo, T.D.H., Cao, N. D T., Mohan, R., 2019. Acetaminophen micropollutant: historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere 236, 124391. doi: 10.1016/j.chemosphere.2019.124391
    Ramola, S., Mishra, T., Rana, G., Srivastava, R.K., 2014. Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre. Environ. Monit. Assess. 186, 9023–9039. doi: 10.1007/s10661-014-4062-5
    Rey-Mafull, C.A., Tacoronte, J.E., Garcia, R., Tobella, J., Llópiz, J.C., Iglesias, A., Hotza, D., 2014. Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid. SpringerPlus 3, 1–12. doi: 10.1186/2193-1801-3-1
    Saad, E.M., Elshaarawy, R.F., Mahmoud, S.A., El-Moselhy, K.M., 2021. New Ulva lactuca algae based chitosan bio-composites for bioremediation of Cd(Ⅱ) ions. J. Bioresour. Bioprod. 6, 223–242. doi: 10.1016/j.jobab.2021.04.002
    Sáenz-Alanís, C.A., García-Reyes, R.B., Soto-Regalado, E., García-González, A., 2017. Phenol and methylene blue adsorption on heat-treated activated carbon: characterization, kinetics, and equilibrium studies. Adsorpt. Sci. Technol. 35, 789–805. doi: 10.1177/0263617416684517
    Samsul Kamal, A., Hafidzah Jabarullah, N., Othman, R., 2020. Catalytic graphitization of oil palm frond using iron and silica. Mater. Today 31, 211–216.
    Saucier, C., Karthickeyan, P., Ranjithkumar, V., Lima, E.C., Dos Reis, G.S., de Brum, I.A.S., 2017. Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ. Sci. Pollut. Res. Int. 24, 5918–5932. doi: 10.1007/s11356-016-8304-7
    Sellaoui, L., Lima, E.C., Dotto, G.L., Ben Lamine, A., 2017. Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. J. Mol. Liq. 234, 375–381. doi: 10.1016/j.molliq.2017.03.111
    Sewu, D.D., Jung, H., Kim, S.S., Lee, D.S., Woo, S.H., 2019. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate. Bioresour. Technol. 277, 77–86. doi: 10.1016/j.biortech.2019.01.034
    Shang, Y.R., Cui, Y.P., Shi, R.X., Yang, P., Wang, J.P., Wang, Y.Z., 2019. Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: kinetics, isotherm, thermodynamics, mechanism. J. Hazard. Mater. 379, 120834. doi: 10.1016/j.jhazmat.2019.120834
    Sparks, D.L., Singh, B., Siebecker, M.G., 2004. Sorption Phenomena on Soils. Environmental Soil Chemistry. Amsterdam: Elsevier, 203–281.
    Sumalinog, D.A.G., Capareda, S.C., de Luna, M.D.G., 2018. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes. J. Environ. Manage. 210, 255–262. doi: 10.1016/j.jenvman.2018.01.010
    Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., Gerzabek, M.H., 2007. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J. Plant Nutr. Soil Sci. 170, 522–529. doi: 10.1002/jpln.200622082
    Thommes, M., 2016. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chem. Int. 38, 25. doi: 10.1515/ci-2016-0119
    Tomul, F., Arslan, Y., Kabak, B., Trak, D., Kendüzler, E., Lima, E.C., Tran, H.N., 2020. Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Sci. Total Environ. 726, 137828. doi: 10.1016/j.scitotenv.2020.137828
    Varela, C.F., Pazos, M.C., Alba, M.D., 2021. Organophilization of acid and thermal treated sepiolite for its application in BTEX adsorption from aqueous solutions. J. Water Process. Eng. 40, 101949. doi: 10.1016/j.jwpe.2021.101949
    Veiga, P.A.D.S., Cerqueira, M.H., Gonçalves, M.G., Matos, T.T.D.S., Pantano, G., Schultz, J., Andrade, J.B., Mangrich, A.S., 2021. Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: structural characterization of the biochars produced. J. Environ. Manage. 285, 112145. doi: 10.1016/j.jenvman.2021.112145
    Wang, Y.D., Luo, J.Y., Qin, J.A., Huang, Y., Ke, T.W., Luo, Y.W., Yang, M.H., 2023. Efficient removal of phytochrome using rice straw-derived biochar: adsorption performance, mechanisms, and practical applications. Bioresour. Technol. 376, 128918. doi: 10.1016/j.biortech.2023.128918
    Wu, J.L., Liu, Z.H., Ma, Q.G., Dai, L., Dang, Z., 2023. Occurrence, removal and risk evaluation of ibuprofen and acetaminophen in municipal wastewater treatment plants: a critical review. Sci. Total Environ. 891, 164600. doi: 10.1016/j.scitotenv.2023.164600
    Xiang, Y., Wu, H.H., Li, L., Ren, M., Qie, H.T., Lin, A.J., 2021. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China. Ecotoxicol. Environ. Saf. 213, 112044. doi: 10.1016/j.ecoenv.2021.112044
    Xu, H., Boeuf, G., Jia, Z.X., Zhu, K.R., Nikravech, M., Kanaev, A., Azouani, R., Traore, M., Elm'selmi, A., 2021. Solvent-free synthesized monolithic ultraporous aluminas for highly efficient removal of remazol brilliant blue R: equilibrium, kinetic, and thermodynamic studies. Materials 14, 3054. doi: 10.3390/ma14113054
    Yan, L.L., Liu, Y., Zhang, Y.D., Liu, S., Wang, C.X., Chen, W.T., Liu, C., Chen, Z.L., Zhang, Y., 2020. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 297, 122381. doi: 10.1016/j.biortech.2019.122381
    Zhang, Y.H., Zhu, C.Q., Liu, F.Q., Yuan, Y., Wu, H.D., Li, A.M., 2019. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: a review. Sci. Total Environ. 646, 265–279. doi: 10.11646/phytotaxa.400.5.2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views (224) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return