Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Charles Michael Albert, Kang Chiang Liew. Recent development and challenges in enhancing fire performance on wood and wood-based composites: A 10-year review from 2012 to 2021[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 27-42. doi: 10.1016/j.jobab.2023.10.004
Citation: Charles Michael Albert, Kang Chiang Liew. Recent development and challenges in enhancing fire performance on wood and wood-based composites: A 10-year review from 2012 to 2021[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 27-42. doi: 10.1016/j.jobab.2023.10.004

Recent development and challenges in enhancing fire performance on wood and wood-based composites: A 10-year review from 2012 to 2021

doi: 10.1016/j.jobab.2023.10.004
Funds:

The authors would like to express their gratitude to the Ministry of Higher Education Malaysia for their Fundamental Research Grant Scheme (FRGS) FRGS/1/2022/TK10/UMS/02/1, the International Tropical Timber Organization for the ITTO Fellowship Programme (No. 070/21A) and Universiti Malaysia Sabah for their support on facilities and technical help.

  • Available Online: 2024-01-31
  • Publish Date: 2023-10-31
  • Due to their durability, versatility, and aesthetic value, wood and wood-based composites are widely used as building materials. The fact that these materials are flammable, however, raises a major worry since they might cause fire hazards and significant loss of life and property. The article investigates the variables that affect fire performance as well as the various fire-retardant treatments and their mechanisms. The current developments and challenges in improving the fire performance of wood and wood-based composites treated with fire-retardant materials are summarized in this paper. Nanoparticles, organic chemicals, and densification are some recent developments in fire-retardant treatments that are also emphasized. Key points from the review are summarized, along with potential areas for further research and development.

     

  • loading
  • [1]
    Abou-Elwafa A.M., 2014. Advances in instrumental analysis of brominated flame retardants: current status and future perspectives. Int. Sch. Res. Notices 2014, 651834.
    [2]
    Abou-Okeil A., El-Sawy S.M., Abdel-Mohdy F.A., 2013. Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohydr. Polym. 92, 2293-2298.
    [3]
    Adetayo O.A., Dahunsi B.I.O., Oyelaran O.A., 2020. Comparisons of predicted and experimental charring rates at various moisture contents of selected Southern Nigerian structural wood species. Eng. Appl. Sci. Res. 47, 93-102.
    [4]
    Albert C.M., Chiang L.K., 2020a. Contact angles of viscoelastic-thermal compression (VTC) modified Paraserianthes falcataria (L.) laminas. IOP Conf. Ser. Earth Environ. Sci. 549, 012029.
    [5]
    Albert C.M., Liew K.C., 2022b. Effect of viscoelastic thermal compression (VTC) treatment on density and moisture content of laminas from Paraserianthes falcataria. Adv. Mater. Process. Technol. 8, 194-202.
    [6]
    Ali S., Hussain S.A., Tohir M., Nuruddin A., 2020. Statistical analysis of Malaysian timber's combustion data from cone calorimeter test. J. Sci. Technol. 28, 185-198.
    [7]
    Asim N., Badiei M., Samsudin N.A., Mohammad M., Razali H., Soltani S., Amin N., 2022. Application of graphene-based materials in developing sustainable infrastructure: an overview. Compos. B 245, 110188.
    [8]
    Assis M.R., Brancheriau L., Napoli A., Trugilho P.F., 2016. Factors affecting the mechanics of carbonized wood: literature review. Wood Sci. Technol. 50, 519-536.
    [9]
    Bagheri S., Alinejad M., Ohno K., Hasburgh L., Arango R., Nejad M., 2022. Improving durability of cross laminated timber (CLT) with borate treatment. J. Wood Sci. 68, 34.
    [10]
    Bahrani B., Hemmati V., Zhou A.X., Quarles S., 2018. Effects of natural weathering on the fire properties of intumescent fire-retardant coatings. Fire Mater. 42, 413-423.
    [11]
    Barber D., 2015. Tall timber buildings: what's next in fire safety? Fire Technol. 51, 1279-1284.
    [12]
    Bartlett A.I., Hadden R.M., Bisby L.A., 2019. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol. 55, 1-49.
    [13]
    Basak S., Ali S.W., 2016. Sustainable fire retardancy of textiles using bio-macromolecules. Polym. Degrad. Stab. 133, 47-64.
    [14]
    Basak S., Samanta K.K., Chattopadhyay S.K., 2015. Fire retardant property of cotton fabric treated with herbal extract. J. Text. Inst. 106, 1338-1347.
    [15]
    Basnayake A.P., Hidalgo J.P., Heitzmann M.T., 2021. A flammability study of aluminium hydroxide (ATH) and ammonium polyphosphate (APP) used with hemp/epoxy composites. Constr. Build. Mater. 304, 124540.
    [16]
    Batiot B., Luche J., Rogaume T., 2014. Thermal and chemical analysis of flammability and combustibility of Fir wood in cone calorimeter coupled to FTIR apparatus. Fire Mater. 38, 418-431.
    [17]
    Božiková M., Kotoulek P., Bilčík M., Kubík Ľ., Hlaváčová Z., Hlaváč P., 2021. Thermal properties of wood and wood composites made from wood waste. Int. Agrophys. 35, 251-256.
    [18]
    Brahmia F.Z., Zsolt K., Horváth P.G., Alpár T.L., 2020. Comparative study on fire retardancy of various wood species treated with PEG 400, phosphorus, and boron compounds for use in cement-bonded wood-based products. Surf. Interfaces 21, 100736.
    [19]
    Buksans E., Laiveniece L., Lubinskis V., 2021. Solid wood surface modification by charring and its impact on reaction to fire performance. Proceedings of the 20th International Scientific Conference Engineering for Rural Development Proceedings, Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 899-905.
    [20]
    Čermák P., Rautkari L., Horáček P., Saake B., Rademacher P., Sablík P., 2015. Analysis of dimensional stability of thermally modified wood affected by re-wetting cycles. BioResources 10, 3242-3253.
    [21]
    Chen P., Sun J.H., He X.C., 2007. Behavior of flame spread downward over thick wood sheets and heat transfer analysis. J. Fire Sci. 25, 5-21.
    [22]
    Chen W.H., Liu P.J., Liu Y., Liu Z.X., 2022. Recent advances in two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem. Eng. J. 446, 137239.
    [23]
    Cheng X.W., Guan J.P., Tang R.C., Liu K.Q., 2016. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J. Clean. Prod. 124, 114-119.
    [24]
    Chiniforush A.A., Akbarnezhad A., Valipour H., Malekmohammadi S., 2019. Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: an experimental study. Constr. Build. Mater. 207, 70-83.
    [25]
    Cortés D., Gil D., Azorín J., Vandecasteele F., Verstockt S., 2020. A review of modelling and simulation methods for flashover prediction in confined space fires. Appl. Sci. 10, 5609.
    [26]
    Costes L., Laoutid F., Brohez S., Dubois P., 2017. Bio-based flame retardants: when nature meets fire protection. Mater. Sci. Eng. 117, 1-25.
    [27]
    Dagenais C., 2017a. Glulam and CLT innovative manufacturing processes and product development: fire performance of adhesives in CLT-Part 2-cone calorimeter test. Vancouver: FPInnovations.
    [28]
    Dagenais C., 2017b. Investigating heat release rate and fire growth contribution of cross-laminated timber-a preliminary study. Vancouver: FPInnovations.
    [29]
    David E., Niculescu V.C., 2021. Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health 18, 13147.
    [30]
    de Hoyos-Martínez P.L., Issaoui H., Herrera R., Labidi J., Charrier-El Bouhtoury F., 2021. Wood fireproofing coatings based on biobased phenolic resins. ACS Sustain. Chem. Eng. 9, 1729-1740.
    [31]
    de Wit C.A., 2002. An overview of brominated flame retardants in the environment. Chemosphere 46, 583-624.
    [32]
    Dietenberger M., White R.H., 2010. Fire safety of wood construction. Interface 18, 3.
    [33]
    Ding J.H., Zhao H.R., Yu H.B., 2022. Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings. Chem. Eng. J. 430, 132838.
    [34]
    Do J.H., Kim D.Y., Seo K.H., 2020. Effect of eco-friendly inorganic flame retardants on mechanical and flame-retardant properties of EPDM compound. Elastomers Compos. 55, 40-45.
    [35]
    Donmez Cavdar A., Mengeloğlu F., Karakus K., 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60, 6-12.
    [36]
    Dorez G., Ferry L., Sonnier R., Taguet A., Lopez-Cuesta J.M., 2014. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 107, 323-331.
    [37]
    Dzurenda L., Banski A., 2019. The effect of firewood moisture content on the atmospheric thermal load by flue gases emitted by a boiler. Sustainability 11, 284.
    [38]
    Esmailpour A., Majidi R., Taghiyari H.R., Ganjkhani M., Mohseni Armaki S.M., Papadopoulos A.N., 2020. Improving fire retardancy of beech wood by graphene. Polymers 12, 303.
    [39]
    Fang F., Huo S.Q., Shen H.F., Ran S.Y., Wang H., Song P.G., Fang Z.P., 2020. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos. Commun. 17, 104-108.
    [40]
    Fayçal B.A., Koucka O.S., Augustin Z.S., Harouna G.I., 2022. Comparative study of thermophysical parameters of different types of upholstery wood and the influence of density on combustion parameters at microscale. Open J. Saf. Sci. Technol. 12, 1-16.
    [41]
    Frangi A., Fontana M., Hugi E., Jübstl R., 2009. Experimental analysis of cross-laminated timber panels in fire. Fire Saf. J. 44, 1078-1087.
    [42]
    Friquin K.L., 2011. Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire Mater. 35, 303-327.
    [43]
    Gaff M., Čekovská H., Bouček J., Kačíková D., Kubovský I., Tribulová T., Zhang L.F., Marino S., Kačík F., 2021. Flammability characteristics of thermally modified meranti wood treated with natural and synthetic fire retardants. Polymers 13, 2160.
    [44]
    Gan W.T., Chen C.J., Wang Z.Y., Song J.W., Kuang Y.D., He S.M., Mi R.Y., Sunderland P.B., Hu L.B., 2019. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv. Funct. Mater. 29, 1807444.
    [45]
    Gašpercová S., Makovická Osvaldová L., 2015. Fire protection in various types of wooden structures. Civ. Environ. Eng. 11, 51-57.
    [46]
    Gazizov A., Sagitova A., Krasnov A., 2022. Reducing the fire hazard of wooden structures. In: Materials Research Proceedings. Association of American Publishers, 56-60.
    [47]
    Gibson A.G., Feih S., Mouritz A.P., 2011. Developments in characterising the structural behaviour of composites in fire. Composite Materials. London: Springer, 2011: 187-218.
    [48]
    Gillani Q.F., Ahmad F., Abdul Mutalib M.I., Megat-Yusoff P.S.M., Ullah S., Messet P.J., Zia-ul-Mustafa M., 2018. Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings. Prog. Org. Coat. 123, 82-98.
    [49]
    Giri R., Nayak L., Rahaman M., 2021. Flame and fire retardancy of polymer-based composites. Mater. Res. Innov. 25, 104-132.
    [50]
    Grześkowiak W.Ł., Molińska-Glura M., Przybylska M., 2022. The influence of the accelerated aging process on the compressive strength of wood treated with components of a salt fire retardant. Materials 15, 4931.
    [51]
    Hamciuc C., Vlad-Bubulac T., Serbezeanu D., Macsim A.M., Lisa G., Anghel I., Şofran I.E., 2022. Effects of phosphorus and boron compounds on thermal stability and flame retardancy properties of epoxy composites. Polymers 14, 4005.
    [52]
    Haurie L., Giraldo M.P., Lacasta A.M., Montón J., Sonnier R., 2019. Influence of different parameters in the fire behaviour of seven hardwood species. Fire Saf. J. 107, 193-201.
    [53]
    Hektor B., Backéus S., Andersson K., 2016. Carbon balance for wood production from sustainably managed forests. Biomass Bioenergy 93, 1-5.
    [54]
    Henry A.G., Büdel T., Bazin P.L., 2018. Towards an understanding of the costs of fire. Quat. Int. 493, 96-105.
    [55]
    Hilton J.E., Leonard J.E., Blanchi R., Newnham G.J., Opie K., Power A., Rucinski C., Swedosh W., 2020. Radiant heat flux modelling for wildfires. Math. Comput. Simul. 175, 62-80.
    [56]
    Hobbs C.E., 2019. Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers 11, 224.
    [57]
    Huang K., Li Z.J., Lin J., Han G., Huang P., 2018. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109-5124.
    [58]
    Huang S., Wang L., Li Y.C., Liang C.B., Zhang J.L., 2021. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 138, 50649.
    [59]
    Huang Y.B., Jiang S.H., Liang R.C., Sun P., Hai Y., Zhang L., 2020. Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621.
    [60]
    Ira J., Hasalová L., Šálek V., Jahoda M., Vystrčil V., 2020. Thermal analysis and cone calorimeter study of engineered wood with an emphasis on fire modelling. Fire Technol. 56, 1099-1132.
    [61]
    İstek A., Aydemİr D., Eroğlu H., 2013. Combustion properties of medium-density fiberboards coated by a mixture of calcite and various fire retardants. Turkish J. Agric. For. 37, 642-648.
    [62]
    Jasmani L., Rusli R., Khadiran T., Jalil R., Adnan S., 2020. Application of nanotechnology in wood-based products industry: a review. Nanoscale Res. Lett. 15, 207.
    [63]
    Jayasuriya W.J., Mulky T.C., Niemeyer K.E., 2022. Smouldering combustion in cellulose and hemicellulose mixtures: examining the roles of density, fuel composition, oxygen concentration, and moisture content. Combust. Theory Model. 26, 831-855.
    [64]
    Jiang Y.Q., Ru X.L., Che W.B., Jiang Z.H., Chen H.L., Hou J.F., Yu Y.M., 2022. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. B 229, 109460.
    [65]
    Kačíková D., Kubovský I., Eštoková A., Kačík F., Kmeťová E., Kováč J., Ďurkovič J., 2021. The influence of nanoparticles on fire retardancy of pedunculate oak wood. Nanomaterials 11, 3405.
    [66]
    Kalali E.N., Zhang L., Shabestari M.E., Croyal J., Wang D.Y., 2019. Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: preparation, flammability and mechanical properties. Fire Saf. J. 107, 210-216.
    [67]
    Kallada Janardhan R., Hostikka S., 2019. Predictive computational fluid dynamics simulation of fire spread on wood cribs. Fire Technol. 55, 2245-2268.
    [68]
    Kang S., Shin Y.C., 2021. Experimental study on occurrence limit heat release rate of flashover in a building fire. J. Korean Soc. Hazard Mitig. 21, 65-71.
    [69]
    Kazulis V., Muizniece I., Zihare L., Blumberga D., 2017. Carbon storage in wood products. Energy Procedia 128, 558-563.
    [70]
    Khademibami L., Barnes H.M., Jeremic D., Shmulsky R., Bourne K., Fatemi S.A., 2020. Antifungal activity and fire resistance properties of nano-chitosan treated wood. BioResources 15, 5926-5939.
    [71]
    Khalili P., Tshai K.Y., Hui D., Kong I., 2017. Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Compos. B 114, 101-110.
    [72]
    Kodur V., Kumar P., Rafi M.M., 2019. Fire hazard in buildings: review, assessment and strategies for improving fire safety. PSU Res. Rev. 4, 1-23.
    [73]
    Kristak L., Kubovský I., Réh R., 2021. New challenges in wood and wood-based materials. Polymers 13, 2538.
    [74]
    Künniger T., Gerecke A.C., Ulrich A., Huch A., Vonbank R., Heeb M., Wichser A., Haag R., Kunz P., Faller M., 2014. Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ. Pollut. 184, 464-471.
    [75]
    Kurzawski A.J., Ezekoye O.A., 2020. Inversion for fire heat-release rate using heat flux measurements. J. Heat Transf. 142, 051301.
    [76]
    Lazar S.T., Kolibaba T.J., Grunlan J.C., 2020. Flame-retardant surface treatments. Nat. Rev. Mater. 5, 259-275.
    [77]
    Li F.F., 2023. Comprehensive review of recent research advances on flame-retardant coatings for building materials: chemical ingredients, micromorphology, and processing techniques. Molecules 28, 1842.
    [78]
    Li L.M., Chen Z.L., Lu J.H., Wei M., Huang Y.X., Jiang P., 2021. Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol. ACS Omega 6, 3921-3930.
    [79]
    Liang C.B., Du Y.Z., Wang Y.Y., Ma A.J., Huang S., Ma Z.L., 2021. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 4, 979-988.
    [80]
    Lin C.F., Karlsson O., Martinka J., Rantuch P., Garskaite E., Mantanis G.I., Jones D., Sandberg D., 2021. Approaching highly leaching-resistant fire-retardant wood by in situ polymerization with melamine formaldehyde resin. ACS Omega 6, 12733-12745.
    [81]
    Lin C.S., Yu C.C., Chen T.C., Bui G., 2012. Smoke transport calculation during a wooden residential structure fire. Appl. Mech. Mater. 249/250, 1082-1086.
    [82]
    Liu L.N., Qian M.B., Song P.A., Huang G.B., Yu Y.M., Fu S.Y., 2016. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain. Chem. Eng. 4, 2422-2431.
    [83]
    Liu Q.Q., Chai Y.B., Ni L., Lyu W.H., 2020a. Flame retardant properties and thermal decomposition kinetics of wood treated with boric acid modified silica Sol. Materials 13, 4478.
    [84]
    Liu S., Wang C., Hu Q.H., Huo S.Q., Zhang Q., Liu Z.T., 2020b. Intumescent fire retardant coating with recycled powder from industrial effluent optimized using response surface methodology. Prog. Org. Coat. 140, 105494.
    [85]
    Liu Y., Zhang A.S., Cheng Y.M., Li M.H., Cui Y.C., Li Z.W., 2023. Recent advances in biomass phytic acid flame retardants. Polym. Test. 124, 108100.
    [86]
    Log T., 2019. Modeling indoor relative humidity and wood moisture content as a proxy for wooden home fire risk. Sensors 19, 5050.
    [87]
    Lowden L.A., Hull T.R., 2013. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2, 1-19.
    [88]
    Ma T.T., Li L.P., Wang Q.W., Guo C.G., 2019. Construction of intumescent flame retardant and hydrophobic coating on wood substrates based on thiol-ene click chemistry without photoinitiators. Compos. B 177, 107357.
    [89]
    Madyaratri E.W., Ridho M.R., Aristri M.A., Lubis M.A.R., Iswanto A.H., Nawawi D.S., Antov P., Kristak L., Majlingová A., Fatriasari W., 2022. Recent advances in the development of fire-resistant biocomposites: a review. Polymers 14, 362.
    [90]
    Magalhães R., Nogueira B., Costa S., Paiva N., Ferra J.M., Magalhães F.D., Martins J., Carvalho L.H., 2020. Effect of panel moisture content on internal bond strength and thickness swelling of medium density fiberboard. Polymers 13, 114.
    [91]
    Mandlekar N., Cayla A., Rault F., Giraud S., Salaün F., Malucelli G., Guan J.P., 2018. An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin - Trends and Applications. London: InTech, 208-231.
    [92]
    Mantanis G.I., Martinka J., Lykidis C., Ševčík L., 2020. Technological properties and fire performance of medium density fibreboard (MDF) treated with selected polyphosphate-based fire retardants. Wood Mater. Sci. Eng. 15, 303-311.
    [93]
    Mariappan T., 2016. Recent developments of intumescent fire protection coatings for structural steel: a review. J. Fire Sci. 34, 120-163.
    [94]
    Mark F.E., Vehlow J., Dresch H., Dima B., Grüttner W., Horn J., 2015. Destruction of the flame retardant hexabromocyclododecane in a full-scale municipal solid waste incinerator. Waste Manag. Res. 33, 165-174.
    [95]
    Márquez Costa J.P., Legrand V., Fréour S., 2019. Durability of composite materials under severe temperature conditions: influence of moisture content and prediction of thermo-mechanical properties during a fire. J. Compos. Sci. 3, 55.
    [96]
    Martinka J., Kačíková D., Hroncová E., Ladomerský J., 2012. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J. Therm. Anal. Calorim. 110, 193-198.
    [97]
    Martinka J., Rantuch P., Liner M., 2018. Calculation of charring rate and char depth of spruce and pine wood from mass loss. J. Therm. Anal. Calorim. 132, 1105-1113.
    [98]
    Mauranen A., Ovaska M., Koivisto J., Salminen L.I., Alava M., 2015. Thermal conductivity of wood: effect of fatigue treatment. Wood Sci. Technol. 49, 359-370.
    [99]
    Mazela B., Batista A., Grześkowiak W., 2020. Expandable graphite as a fire retardant for cellulosic materials: a review. Forests 11, 755.
    [100]
    Meng Q.X., Zhu G.Q., Yu M.M., Pan R.L., 2018. The effect of thickness on plywood vertical fire spread. Procedia Eng. 211, 555-564.
    [101]
    Mensah R.A., Jiang L., Renner J.S., Xu Q., 2023. Characterisation of the fire behaviour of wood: from pyrolysis to fire retardant mechanisms. J. Therm. Anal. Calorim. 148, 1407-1422.
    [102]
    Mohamed A.L., Hassabo A.G., 2015. Flame Retardant of Cellulosic Materials and Their Composites. Flame Retardants. Cham: Springer, 247-314.
    [103]
    Mohsin M., Ahmad S.W., Khatri A., Zahid B., 2013. Performance enhancement of fire retardant finish with environment friendly bio cross-linker for cotton. J. Clean. Prod. 51, 191-195.
    [104]
    Mustafa B.M.K.M.A.G., 2020. Wood & Fire Safety. Berlin: Springer International Publishing, 50-57.
    [105]
    Nikolaeva M., Kärki T., 2016. Influence of fire retardants on the reaction-to-fire properties of coextruded wood-polypropylene composites. Fire Mater. 40, 535-543.
    [106]
    Nikolic M., Lawther J.M., Sanadi A.R., 2015. Use of nanofillers in wood coatings: a scientific review. J. Coat. Technol. Res. 12, 445-461.
    [107]
    Nine M.J., Cole M.A., Tran D.N.H., Losic D., 2015. Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A 3, 12580-12602.
    [108]
    Nine M.J., Tran D.N.H., Tung T.T., Kabiri S., Losic D., 2017. Graphene-borate as an efficient fire retardant for cellulosic materials with multiple and synergetic modes of action. ACS Appl. Mater. Interfaces 9, 10160-10168.
    [109]
    Norzali N.R.A., Badri K.H., 2016. The role of phosphate ester as a fire retardant in the palm-based rigid polyurethane foam. Polym. Polym. Compos. 24, 711-718.
    [110]
    Oh S.J., Kong H.S., 2020. The strategies to supply efficient fire fighting force in high-rise building by NFPA 550 guide to the fire safety concepts tree: focusing on automatic fire suppression. Asia Pac. J. Converg. Res. Interchange 6, 67-80.
    [111]
    Okoye N.H., Eboatu A.N., Arinze R.U., Udeozo P.I., Umedum N.L., Ogbonna O.A., 2014. Effect of density on flame characteristics of some tropical timbers. IOSR J. Appl. Chem. 7, 104-111.
    [112]
    Olawoyin R., 2018. Nanotechnology: the future of fire safety. Saf. Sci. 110, 214-221.
    [113]
    Östman B., Brandon D., Frantzich H., 2017. Fire safety engineering in timber buildings. Fire Saf. J. 91, 11-20.
    [114]
    Ottmar R.D., 2014. Wildland fire emissions, carbon, and climate: modeling fuel consumption. For. Ecol. Manag. 317, 41-50.
    [115]
    Poletto M., Zattera A.J., Santana R.M.C., 2012. Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J. Appl. Polym. Sci. 126, 337-344.
    [116]
    Popescu C.M., Pfriem A., 2020. Treatments and modification to improve the reaction to fire of wood and wood based products: an overview. Fire Mater. 44, 100-111.
    [117]
    Price-Allison A., Mason P.E., Jones J.M., Barimah E.K., Jose G., Brown A.E., Ross A.B., Williams A., 2023. The impact of fuelwood moisture content on the emission of gaseous and particulate pollutants from a wood stove. Combust. Sci. Technol. 195, 133-152.
    [118]
    Qu L.J., Wang Z.Y., Qian J., He Z.B., Yi S.L., 2018. Effect of combined aluminum-silicon synergistic impregnation and heat treatment on the thermal stability, chemical components, and morphology of wood. BioResources 14, 349-362.
    [119]
    Ratnasingam J., Latib H.A., Ng W.C., Cellathurai M., Chin K.A., Senin A.L., Lim C.L., 2018. Preference of using wood and wood products in the construction industry in peninsular Malaysia. BioResources 13, 5289-5302.
    [120]
    Realinho V., Haurie L., Formosa J., Velasco J.I., 2018. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene. Polym. Degrad. Stab. 155, 208-219.
    [121]
    Renner J.S., Mensah R.A., Jiang L., Xu Q., Das O., Berto F., 2021. Fire behavior of wood-based composite materials. Polymers 13, 4352.
    [122]
    Rinta-Paavola A., Hostikka S., 2022. A model for the pyrolysis of two Nordic structural timbers. Fire Mater. 46, 55-68.
    [123]
    Riyazuddin Nageswara Rao T., Hussain I., Heun Koo B., 2020. Effect of aluminum tri-hydroxide/zinc borate and aluminium tri-hydroxide/melamine flame retardant systems synergies on epoxy resin. Mater. Today 27, 2269-2272.
    [124]
    Sala C.M., Robles E., Gumowska A., Wronka A., Kowaluk G., 2020. Influence of moisture content on the mechanical properties of selected wood-based composites. BioResources 15, 5503-5513.
    [125]
    Sang B., Li Z.W., Li X.H., Yu L.G., Zhang Z.J., 2016. Graphene-based flame retardants: a review. J. Mater. Sci. 51, 8271-8295.
    [126]
    Seefeldt H., Braun U., 2012. A new flame retardant for wood materials tested in wood-plastic composites. Macromol. Mater. Eng. 297, 814-820.
    [127]
    Segev O., Kushmaro A., Brenner A., 2009. Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 6, 478-491.
    [128]
    Shah A.U.R., Prabhakar M.N., Song J.I., 2017. Current advances in the fire retardancy of natural fiber and bio-based composites: a review. Int. J. Precis. Eng. Manuf. Green Technol. 4, 247-262.
    [129]
    Sjöström J., Kozłowski M., Honfi D., Lange D., Albrektsson J., Lenk P., Eriksson J., 2020. Fire resistance testing of a timber-glass composite beam. Int. J. Struct. Glass Adv. Mater. Res. 4, 24-40.
    [130]
    Song F.X., Liu T., Fan Q., Li D.X., Ou R.X., Liu Z.Z., Wang Q.W., 2022. Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin. Prog. Org. Coat. 162, 106597.
    [131]
    Špilák D., Majlingová A., 2022. Progressive methods in studying the charred layer parameters change in relation to wood moisture content. Polymers 14, 4997.
    [132]
    Subyakto Kajimoto T., Hata T., Ishihara S., Kawai S.C., Getto H., 1998. Improving fire retardancy of fast growing wood by coating with fire retardant and surface densification. Fire Mater. 22, 207-212.
    [133]
    Sun N., Zhang Q.P., Sun H.R., Yang W.B., Zhou Y.L., Song J.F., Luo D.L., 2018. Enhanced thermal conductivity of 5A molecular sieve with BNs segregated structures. Adv. Eng. Mater. 20, 1700745.
    [134]
    Suwondo R., Cunningham L., Gillie M., Suangga M., Hidayat I., 2021. Model parameter sensitivity for structural analysis of composite slab structures in fire. Int. J. Technol. 12, 339.
    [135]
    Tanui J.K., Kioni P.N., Mirre T., Nowitzki M., Karuri N.W., 2020. The influence of particle packing density on wood combustion in a fixed bed under oxy-fuel conditions. Energy 194, 116863.
    [136]
    Terrei L., Acem Z., Georges V., Lardet P., Boulet P., Parent G., 2019. Experimental tools applied to ignition study of spruce wood under cone calorimeter. Fire Saf. J. 108, 102845.
    [137]
    Torvela T., Uski O., Karhunen T., Lähde A., Jalava P., Sippula O., Tissari J., Hirvonen M.R., Jokiniemi J., 2014. Reference particles for toxicological studies of wood combustion: formation, characteristics, and toxicity compared to those of real wood combustion particulate mass. Chem. Res. Toxicol. 27, 1516-1527.
    [138]
    Trochonowicz M., Galas M., 2019. Influence of air humidity and temperature on thermal conductivity of wood-based materials. Bud. Archit. 17, 77-86.
    [139]
    Tsapko Y., Tsapko А., Bondarenko O., Chudovska V., 2021. Thermophysical characteristics of the formed layer of foam coke when protecting fabric from fire by a formulation based on modified phosphorus-ammonium compounds. East. Eur. J. Enterp. Technol. 3, 34-41.
    [140]
    Uddin M., Kiviranta K., Suvanto S., Alvila L., Leskinen J., Lappalainen R., Haapala A., 2020. Casein-magnesium composite as an intumescent fire retardant coating for wood. Fire Saf. J. 112, 102943.
    [141]
    Uner I.H., Deveci I., Baysal E., Turkoglu T., Toker H., Peker H., 2016. Thermal analysis of oriental beech wood treated with some borates as fire retardants. Maderas Cienc. Tecnol. 18, 293-304.
    [142]
    Vakhitova L.N., 2019. Fire retardant nanocoating for wood protection. Nanotechnology in Eco-Efficient Construction. Amsterdam: Elsevier, 361-391.
    [143]
    Vicente E.D., Vicente A.M., Evtyugina M., Oduber F.I., Amato F., Querol X., Alves C., 2020. Impact of wood combustion on indoor air quality. Sci. Total Environ. 705, 135769.
    [144]
    Vojta Š., Bečanová J., Melymuk L., Komprdová K., Kohoutek J., Kukučka P., Klánová J., 2017. Screening for halogenated flame retardants in European consumer products, building materials and wastes. Chemosphere 168, 457-466.
    [145]
    Walls R., Cicione A., Pharoah R., 2020. Fire Safety Engineering Guideline for Informal Settlements: Towards Practical Solutions for a Complex Problem in South Africa. Matieland: FireSUN Publications.
    [146]
    Walls R., Olivier G., Eksteen R., 2017. Informal settlement fires in South Africa: fire engineering overview and full-scale tests on “shacks”. Fire Saf. J. 91, 997-1006.
    [147]
    Wang F., Liu J.L., Lv W.H., 2017a. Thermal degradation and fire performance of wood treated with PMUF resin and boron compounds. Fire Mater. 41, 1051-1057.
    [148]
    Wang K.H., Meng D., Wang S.H., Sun J., Li H.F., Gu X.Y., Zhang S., 2022. Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind. Crops Prod. 176, 114364.
    [149]
    Wang S.P., Huang X.Y., Chen H.X., Liu N.A., 2017b. Interaction between flaming and smouldering in hot-particle ignition of forest fuels and effects of moisture and wind. Int. J. Wildland Fire 26, 71.
    [150]
    Wang W., Zammarano M., Shields J.R., Knowlton E.D., Kim I., Gales J.A., Hoehler M.S., Li J.Z., 2018. A novel application of silicone-based flame-retardant adhesive in plywood. Mater. Des. 189, 448-459.
    [151]
    Wang X.Q., Wang F., Yu Z.M., Zhang Y., Qi C.S., Du L.X., 2017c. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. J. Wood Sci. 63, 271-280.
    [152]
    White R.H., 1987. Effect of lignin content and extractives on the higher heating value. Wood Fiber Sci. 19, 446-452.
    [153]
    White R.H., 2016. Analytical Methods for Determining Fire Resistance of Timber Members. SFPE Handbook of Fire Protection Engineering. New York: Springer, 346-365.
    [154]
    Wu J., Wang M.Z., Guo H.W., 2017. Synergistic flame retardant effects of different zeolites on intumescent fire retardant coating for wood. BioResources 12, 5369-5382.
    [155]
    Wu Y., Li X.M., Zhao H., Yao F.B., Cao J., Chen Z., Huang X.D., Wang D.B., Yang Q., 2021. Recent advances in transition metal carbides and nitrides (MXenes): characteristics, environmental remediation and challenges. Chem. Eng. J. 418, 129296.
    [156]
    Xu C., Gao L.R., Zheng M.H., Qiao L., Cui L.L., Wang K.R., Huang D., 2019. Short- and medium-chain chlorinated paraffins in commercial rubber track products and raw materials. J. Hazard. Mater. 380, 120854.
    [157]
    Xu M.J., Xia S.Y., Liu C., Li B., 2018. Preparation of Poly(phosphoric acid piperazine) and its application as an effective flame retardant for epoxy resin. Chin. J. Polym. Sci. 36, 655-664.
    [158]
    Xu Q.F., Chen L.Z., Harries K.A., Zhang F.W., Liu Q., Feng J.H., 2015. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr. Build. Mater. 96, 416-427.
    [159]
    Xu S., Zhang M., Li S.Y., Zeng H.Y., Du J.Z., Chen C.R., Wu K., Tian X.Y., Pan Y., 2020. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene. Appl. Clay Sci. 185, 105348.
    [160]
    Yang G.C., Cai J.R., Geng Y.R., Xu B.B., Zhang Q.H., 2020. Cu-modified ZSM zeolite has synergistic flame retardance, smoke suppression, and catalytic conversion effects on pulp fiber after ammonium polyphosphate flame-retardant treatment. ACS Sustain. Chem. Eng. 8, 14365-14376.
    [161]
    Yapici F., Ozcifci A., Esen R., Kurt S., 2011. The effect of grain angle and species on thermal conductivity of some selected wood species. BioResources 6, 2757-2762.
    [162]
    Yu B., Tawiah B., Wang L.Q., Yin Yuen A.C., Zhang Z.C., Shen L.L., Lin B., Fei B., Yang W., Li A., Zhu S.E., Hu E.Z., Lu H.D., Yeoh G.H., 2019. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 374, 110-119.
    [163]
    Yu D.F., Duan H.B., Song Q.B., Liu Y.C., Li Y., Li J.H., Shen W.J., Luo J.H., Wang J.B., 2017. Characterization of brominated flame retardants from e-waste components in China. Waste Manag. 68, 498-507.
    [164]
    Yue K., Wu J.H., Xu L.Q., Tang Z.Q., Chen Z.J., Liu W.Q., Wang L., 2020. Use impregnation and densification to improve mechanical properties and combustion performance of Chinese fir. Constr. Build. Mater. 241, 118101.
    [165]
    Zhang H., Zhang X., Wang Y., Bai P.C., Hayakawa K., Zhang L.L., Tang N., 2022. Characteristics and influencing factors of polycyclic aromatic hydrocarbons emitted from open burning and stove burning of biomass: a brief review. Int. J. Environ. Res. Public Health 19, 3944.
    [166]
    Zhang L.C., Yi D.Q., Hao J.W., Gao M., 2021. One-step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy. Polym. Adv. Technol. 32, 1176-1186.
    [167]
    Zhang Y., Huang Y.P., Li M.C., Zhang S., Zhou W.M., Mei C.T., Pan M.Z., 2023. Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360.
    [168]
    Zhang Y., Ji J., Li J., Sun J.H., Wang Q.S., Huang X.J., 2012a. Effects of altitude and sample width on the characteristics of horizontal flame spread over wood sheets. Fire Saf. J. 51, 120-125.
    [169]
    Zhang Y., Sun J.H., Huang X.J., Chen X.F., 2013. Heat transfer mechanisms in horizontal flame spread over wood and extruded polystyrene surfaces. Int. J. Heat Mass Transf. 61, 28-34.
    [170]
    Zhang Z.X., Zhang J., Lu B.X., Xin Z.X., Kang C.K., Kim J.K., 2012b. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites. Compos. B 43, 150-158.
    [171]
    Zhao F.Y., Tang T.L., Hou S.J., Fu Y.C., 2020. Preparation and synergistic effect of chitosan/sodium phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly. Coatings 10, 848.
    [172]
    Zhao W.W., Blauw L., van Logtestijn R., Cornwell W., Cornelissen J., 2014. Interactions between fine wood decomposition and flammability. Forests 5, 827-846.
    [173]
    Zhao X.J., Liang Z.W., Huang Y.B., Hai Y., Zhong X.D., Xiao S., Jiang S.H., 2021. Influence of phytic acid on flame retardancy and adhesion performance enhancement of poly (vinyl alcohol) hydrogel coating to wood substrate. Prog. Org. Coat. 161, 106453.
    [174]
    Zhou B., Wang K., Yang W.Y., Wang W., Sun B., Xu M., Wang X., Ke W., 2021. Influence of woodgrain orientation on the upward flame spread over discrete wood chips. Case Stud. Therm. Eng. 28, 101616.
    [175]
    Zhou K.Q., Gui Z., Hu Y., 2016. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos. A 80, 217-227.
    [176]
    Zirnstein B., Schulze D., Schartel B., 2019. Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials 12, 1932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (28) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return