Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Yan Ma, Hongxiao Wang, Ziyang Wu, Weihong Tan, Guodong Feng, Jianchun Jiang. A process insight into production of ethyl levulinate via a stepwise fractionation[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 233-242. doi: 10.1016/j.jobab.2023.11.001
Citation: Yan Ma, Hongxiao Wang, Ziyang Wu, Weihong Tan, Guodong Feng, Jianchun Jiang. A process insight into production of ethyl levulinate via a stepwise fractionation[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 233-242. doi: 10.1016/j.jobab.2023.11.001

A process insight into production of ethyl levulinate via a stepwise fractionation

doi: 10.1016/j.jobab.2023.11.001
More Information
  • Corresponding author: E-mail address: tanweihong71@163.com (W. Tan)
  • Available Online: 2023-11-03
  • Publish Date: 2024-05-01
  • Ethyl levulinate (EL) is a key biomass-derived compounds due to its socio-economic benefits for the synthesis of commodity chemicals. Herein, we proposed an efficient one-step bamboo conversion to EL in ethanol, and a novel stepwise fractionation to purify EL and lignocellulose degradation products. A proton acid, due to its high catalytic efficiency, yielded 26.65 % EL in 120 min at 200 ℃. The productions of ethyl glucoside and 5-ethoxymethylfurfural were analyzed in terms of by-products formation. To the best of our knowledge, there is no single report on catalyst for one step synthesis of EL directly from bamboo, as well as a stepwise fractionation to purify EL. Due to similar physiochemical properties in each fraction, the platform molecules could broaden a new paradigm of bamboo biomass utilization for renewable energy and value-added biochemicals. In addition, glucose, ethyl glucoside, corn starch, and microcrystalline cellulose were also investigated as substrates, so that the reaction intermediates of this one-pot procedure were identified and a possible reaction mechanism was proposed.

     

  • Declaration of competing interest
    The authors declared that they have no conflicts of interest to this work.
  • loading
  • Adeleye, A.T., Louis, H., Akakuru, O.U., Joseph, I., Enudi, O.C., Michael, D.P., 2019. A review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 7, 165–185. doi: 10.3934/energy.2019.2.165
    Carlier, S., Gripekoven, J., Philippo, M., Hermans, S., 2021. Ru on N-doped carbon supports for the direct hydrogenation of cellobiose into sorbitol. Appl. Catal. B 282, 119515. doi: 10.1016/j.apcatb.2020.119515
    Chang, C., Xu, G.Z., Zhu, W.N., Bai, J., Fang, S.Q., 2015. One-pot production of a liquid biofuel candidate—Ethyl levulinate from glucose and furfural residues using a combination of extremely low sulfuric acid and zeolite USY. Fuel 140, 365–370. doi: 10.1016/j.fuel.2014.09.102
    Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., Royer, S., 2018. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 118, 11023–11117. doi: 10.1021/acs.chemrev.8b00134
    Damm, T., Pattathil, S., Günl, M., Jablonowski, N.D., O’Neill, M., Grün, K.S., Grande, P.M., Leitner, W., Schurr, U., Usadel, B., Klose, H., 2017. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr. Polym. 168, 94–102. doi: 10.1016/j.carbpol.2017.03.062
    Deivayanai, V.C., Yaashikaa, P.R., Kumar, P.S., Rangasamy, G., 2022. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: pretreatment strategy, technology advances and perspectives. Bioresour. Technol. 365, 128166. doi: 10.1016/j.biortech.2022.128166
    Di Menno Di Bucchianico, D., Wang, Y.J., Buvat, J.C., Pan, Y., Moreno, V.C., Leveneur, S., 2022. Production of levulinic acid and alkyl levulinates: a process insight. Green Chem. 24, 614–646. doi: 10.1039/d1gc02457d
    Esposito, D., Antonietti, M., 2015. Redefining biorefinery: the search for unconventional building blocks for materials. Chem. Soc. Rev. 44, 5821–5835. doi: 10.1039/C4CS00368C
    Feng, J.F., Jiang, J.C., Xu, J.M., Yang, Z.Z., Wang, K., Guan, Q., Chen, S.G., 2015. Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass. Appl. Energy 154, 520–527. doi: 10.1016/j.apenergy.2015.04.115
    Gomes, G.R., Scopel, E., Rocha, N.L., Breitkreitz, M.C., Cormanich, R.A., Rezende, C.A., Pastre, J.C., 2022. Direct ethyl levulinate production from raw lignocellulosic biomass mediated by a novel taurine-based imidazolium ionic liquid. ACS Sustain. Chem. Eng. 10, 15876–15888. doi: 10.1021/acssuschemeng.2c05172
    Hao, H.Y., Abe, Y., Guo, H.X., Zhang, X.A., Lee Smith Jr, R., 2022. Catalytic transfer hydrogenation and ethanolysis of furfural to ethyl levulinate using sulfonated Hfor Ni-catalysts prepared with mixed solvents. ACS Sustain. Chem. Eng. 10, 16261–16270. doi: 10.1021/acssuschemeng.2c04867
    Heda, J., Niphadkar, P., Mudliar, S., Bokade, V., 2020. Highly efficient micro-meso acidic H-USY catalyst for one step conversion of wheat straw to ethyl levulinate (biofuel additive). Microporous Mesoporous Mater. 306, 110474. doi: 10.1016/j.micromeso.2020.110474
    Hoang, A.T., Ong, H.C., Fattah, Rizwanul, Chong, I.M., Cheng, C.T., Sakthivel, C.K., R Ok, Y.S., 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol. 223, 106997. doi: 10.1016/j.fuproc.2021.106997
    Hu, A.Y., Wang, H.J., Ding, J., 2022. Alcoholysis of furfuryl alcohol to ethyl levulinate catalyzed by a deep eutectic solvent. ACS Omega 7, 33192–33198. doi: 10.1021/acsomega.2c03424
    Hu, Y.X., Li, H., Hu, P., Li, L.Z., Wu, D., Xue, Z.D., Hu, C.W., Zhu, L.F., 2023. Promoting the production of 5-hydroxymethylfurfural from high-concentration fructose by creating micro-reactors in a mixed solvent. Green Chem. 25, 661–670. doi: 10.1039/d2gc04295a
    Huber, G.W., Iborra, S., Corma, A., 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098. doi: 10.1021/cr068360d
    Karnjanakom, S., Maneechakr, P., Samart, C., Kongparakul, S., Guan, G.Q., Bayu, A., 2020. Direct conversion of sugar into ethyl levulinate catalyzed by selective heterogeneous acid under co-solvent system. Catal. Commun. 143, 106058. doi: 10.1016/j.catcom.2020.106058
    Kudakasseril Kurian, J., Raveendran Nair, G., Hussain, A., Vijaya Raghavan, G.S., 2013. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew. Sustain. Energy Rev. 25, 205–219. doi: 10.1016/j.rser.2013.04.019
    Kudo, S., Goto, N., Sperry, J., Norinaga, K., Hayashi, J.I., 2017. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase. ACS Sustain. Chem. Eng. 5, 1132–1140. doi: 10.1021/acssuschemeng.6b02463
    Li, C., Zhao, J., Tong, H.X., Fan, X.D., Fang, X.J., Sha, Y.L., Sun, Z.Z., Chu, W.Y., 2023. Design and synthesis of SO3H-functionalized acidic ionic liquids for catalytic conversion of wheat straw to ethyl levulinate. Fuel 333, 126284. doi: 10.1016/j.fuel.2022.126284
    Liu, H., Meng, H.B., Cong, H.B., Shen, X.L., Chen, X.L., Xing, H.H., Dai, J.H., 2022. Alcoholysis kinetics and mechanism studies of ethyl levulinate production from ball milled corn stover. RSC Adv. 12, 34145–34153. doi: 10.1039/d2ra05644e
    Liu, H.A., Chen, X.L., Zhang, Y.X., Lu, M.S., Lyu, H.H., Han, L.J., Xiao, W.H., 2020. Alcoholysis of ball-milled corn stover: the enhanced conversion of carbohydrates into biobased chemicals over combination catalysts of [bmim-SO3H][HSO4]and Al2(SO4)3. Energy Fuels 34, 7085–7093. doi: 10.1021/acs.energyfuels.9b04294
    Lu, K.F., Wang, Y.F., Zhu, L.J., Xing, B., Wang, S.R., 2023a. Efficient conversion of biomass-derived saccharides to levulinic acid using silicotungstic acid. Energy Fuels 37, 6642–6650. doi: 10.1021/acs.energyfuels.3c00948
    Lu, Q., Chen, Y.F., Song, W.P., Tao, C.N., Zhang, J.H., Sun, Y., Peng, L.C., Liu, H., 2023b. Mechanistic role of 𝛾-valerolactone co-solvent to promote ethyl levulinate production from cellulose transformation in ethanol. Fuel 346, 128371. doi: 10.1016/j.fuel.2023.128371
    Quereshi, S., Ahmad, E., Pant, K.K., Dutta, S., 2017. Insights into the metal salt catalyzed ethyl levulinate synthesis from biorenewable feedstocks. Catal. Today 291, 187–194. doi: 10.1016/j.cattod.2016.12.019
    Rizqullah, H., Yang, J., Lee, J.W., 2022. Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. Korean J. Chem. Eng. 39, 2754–2763. doi: 10.1007/s11814-022-1145-9
    Sasaki, K., Sasaki, D., Tsuge, Y., Morita, M., Kondo, A., 2021. Enhanced methane production from cellulose using a two-stage process involving a bioelectrochemical system and a fixed film reactor. Biotechnol. Biofuels 14, 7. doi: 10.1186/s13068-020-01866-x
    Sert, M., 2020. Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate. Renew. Energy 153, 1155–1162. doi: 10.1016/j.renene.2020.02.070
    Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., Li, Y.J., Kuang, Y.D., Li, Y.F., Quispe, N., Yao, Y.G., Gong, A., Leiste, U.H., Bruck, H.A., Zhu, J.Y., Vellore, A., Li, H., Minus, M.L., Jia, Z., Martini, A., Li, T., Hu, L.B., 2018. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228. doi: 10.1038/nature25476
    Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M., 2012. Valorization of biomass: deriving more value from waste. Science 337, 695–699. doi: 10.1126/science.1218930
    Wang, Y.S., Shi, J.J., Chen, X.S., Chen, M.Q., Wang, J., Yao, J.M., 2022. Ethyl levulinate production from cellulose conversion in ethanol medium over high-efficiency heteropoly acids. Fuel 324, 124642. doi: 10.1016/j.fuel.2022.124642
    Wu, Z.L., Yu, Y., Wu, H.W., 2023. Hydrothermal reactions of biomass-derived platform molecules: mechanistic insights into 5-hydroxymethylfurfural (5-HMF) formation during glucose and fructose decomposition. Energy Fuels 37, 2115–2126. doi: 10.1021/acs.energyfuels.2c03462
    Xu, J.M., Xie, X.F., Wang, J.X., Jiang, J.C., 2016. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem. 18, 3124–3138. doi: 10.1039/C5GC03070F
    Yang, Y., Hu, C.W., Abu-Omar, M.M., 2012. Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system. Bioresour. Technol. 116, 190–194. doi: 10.1109/BMEI.2012.6513000
    Zainol, M.M., Asmadi, M., Amin, N.A.S., Roslan, M.N.F., 2022. Glucose-derived bio-fuel additive via ethanolysis catalyzed by zinc modified sulfonated carbon. Mater. Today 57, 1008–1013.
    Zhang, L.X., Tian, L., Xu, Z.Y., Wang, L., 2022. Direct production of ethyl levulinate from carbohydrates and biomass waste catalyzed by modified porous silica with multiple acid sites. Process. Biochem. 121, 152–162. doi: 10.1016/j.procbio.2022.06.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (285) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return