Citation: | Yan Ma, Hongxiao Wang, Ziyang Wu, Weihong Tan, Guodong Feng, Jianchun Jiang. A process insight into production of ethyl levulinate via a stepwise fractionation[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 233-242. doi: 10.1016/j.jobab.2023.11.001 |
Adeleye, A.T., Louis, H., Akakuru, O.U., Joseph, I., Enudi, O.C., Michael, D.P., 2019. A review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 7, 165–185. doi: 10.3934/energy.2019.2.165
|
Carlier, S., Gripekoven, J., Philippo, M., Hermans, S., 2021. Ru on N-doped carbon supports for the direct hydrogenation of cellobiose into sorbitol. Appl. Catal. B 282, 119515. doi: 10.1016/j.apcatb.2020.119515
|
Chang, C., Xu, G.Z., Zhu, W.N., Bai, J., Fang, S.Q., 2015. One-pot production of a liquid biofuel candidate—Ethyl levulinate from glucose and furfural residues using a combination of extremely low sulfuric acid and zeolite USY. Fuel 140, 365–370. doi: 10.1016/j.fuel.2014.09.102
|
Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., Royer, S., 2018. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 118, 11023–11117. doi: 10.1021/acs.chemrev.8b00134
|
Damm, T., Pattathil, S., Günl, M., Jablonowski, N.D., O’Neill, M., Grün, K.S., Grande, P.M., Leitner, W., Schurr, U., Usadel, B., Klose, H., 2017. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr. Polym. 168, 94–102. doi: 10.1016/j.carbpol.2017.03.062
|
Deivayanai, V.C., Yaashikaa, P.R., Kumar, P.S., Rangasamy, G., 2022. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: pretreatment strategy, technology advances and perspectives. Bioresour. Technol. 365, 128166. doi: 10.1016/j.biortech.2022.128166
|
Di Menno Di Bucchianico, D., Wang, Y.J., Buvat, J.C., Pan, Y., Moreno, V.C., Leveneur, S., 2022. Production of levulinic acid and alkyl levulinates: a process insight. Green Chem. 24, 614–646. doi: 10.1039/d1gc02457d
|
Esposito, D., Antonietti, M., 2015. Redefining biorefinery: the search for unconventional building blocks for materials. Chem. Soc. Rev. 44, 5821–5835. doi: 10.1039/C4CS00368C
|
Feng, J.F., Jiang, J.C., Xu, J.M., Yang, Z.Z., Wang, K., Guan, Q., Chen, S.G., 2015. Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass. Appl. Energy 154, 520–527. doi: 10.1016/j.apenergy.2015.04.115
|
Gomes, G.R., Scopel, E., Rocha, N.L., Breitkreitz, M.C., Cormanich, R.A., Rezende, C.A., Pastre, J.C., 2022. Direct ethyl levulinate production from raw lignocellulosic biomass mediated by a novel taurine-based imidazolium ionic liquid. ACS Sustain. Chem. Eng. 10, 15876–15888. doi: 10.1021/acssuschemeng.2c05172
|
Hao, H.Y., Abe, Y., Guo, H.X., Zhang, X.A., Lee Smith Jr, R., 2022. Catalytic transfer hydrogenation and ethanolysis of furfural to ethyl levulinate using sulfonated Hfor Ni-catalysts prepared with mixed solvents. ACS Sustain. Chem. Eng. 10, 16261–16270. doi: 10.1021/acssuschemeng.2c04867
|
Heda, J., Niphadkar, P., Mudliar, S., Bokade, V., 2020. Highly efficient micro-meso acidic H-USY catalyst for one step conversion of wheat straw to ethyl levulinate (biofuel additive). Microporous Mesoporous Mater. 306, 110474. doi: 10.1016/j.micromeso.2020.110474
|
Hoang, A.T., Ong, H.C., Fattah, Rizwanul, Chong, I.M., Cheng, C.T., Sakthivel, C.K., R Ok, Y.S., 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol. 223, 106997. doi: 10.1016/j.fuproc.2021.106997
|
Hu, A.Y., Wang, H.J., Ding, J., 2022. Alcoholysis of furfuryl alcohol to ethyl levulinate catalyzed by a deep eutectic solvent. ACS Omega 7, 33192–33198. doi: 10.1021/acsomega.2c03424
|
Hu, Y.X., Li, H., Hu, P., Li, L.Z., Wu, D., Xue, Z.D., Hu, C.W., Zhu, L.F., 2023. Promoting the production of 5-hydroxymethylfurfural from high-concentration fructose by creating micro-reactors in a mixed solvent. Green Chem. 25, 661–670. doi: 10.1039/d2gc04295a
|
Huber, G.W., Iborra, S., Corma, A., 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098. doi: 10.1021/cr068360d
|
Karnjanakom, S., Maneechakr, P., Samart, C., Kongparakul, S., Guan, G.Q., Bayu, A., 2020. Direct conversion of sugar into ethyl levulinate catalyzed by selective heterogeneous acid under co-solvent system. Catal. Commun. 143, 106058. doi: 10.1016/j.catcom.2020.106058
|
Kudakasseril Kurian, J., Raveendran Nair, G., Hussain, A., Vijaya Raghavan, G.S., 2013. Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew. Sustain. Energy Rev. 25, 205–219. doi: 10.1016/j.rser.2013.04.019
|
Kudo, S., Goto, N., Sperry, J., Norinaga, K., Hayashi, J.I., 2017. Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase. ACS Sustain. Chem. Eng. 5, 1132–1140. doi: 10.1021/acssuschemeng.6b02463
|
Li, C., Zhao, J., Tong, H.X., Fan, X.D., Fang, X.J., Sha, Y.L., Sun, Z.Z., Chu, W.Y., 2023. Design and synthesis of SO3H-functionalized acidic ionic liquids for catalytic conversion of wheat straw to ethyl levulinate. Fuel 333, 126284. doi: 10.1016/j.fuel.2022.126284
|
Liu, H., Meng, H.B., Cong, H.B., Shen, X.L., Chen, X.L., Xing, H.H., Dai, J.H., 2022. Alcoholysis kinetics and mechanism studies of ethyl levulinate production from ball milled corn stover. RSC Adv. 12, 34145–34153. doi: 10.1039/d2ra05644e
|
Liu, H.A., Chen, X.L., Zhang, Y.X., Lu, M.S., Lyu, H.H., Han, L.J., Xiao, W.H., 2020. Alcoholysis of ball-milled corn stover: the enhanced conversion of carbohydrates into biobased chemicals over combination catalysts of [bmim-SO3H][HSO4]and Al2(SO4)3. Energy Fuels 34, 7085–7093. doi: 10.1021/acs.energyfuels.9b04294
|
Lu, K.F., Wang, Y.F., Zhu, L.J., Xing, B., Wang, S.R., 2023a. Efficient conversion of biomass-derived saccharides to levulinic acid using silicotungstic acid. Energy Fuels 37, 6642–6650. doi: 10.1021/acs.energyfuels.3c00948
|
Lu, Q., Chen, Y.F., Song, W.P., Tao, C.N., Zhang, J.H., Sun, Y., Peng, L.C., Liu, H., 2023b. Mechanistic role of 𝛾-valerolactone co-solvent to promote ethyl levulinate production from cellulose transformation in ethanol. Fuel 346, 128371. doi: 10.1016/j.fuel.2023.128371
|
Quereshi, S., Ahmad, E., Pant, K.K., Dutta, S., 2017. Insights into the metal salt catalyzed ethyl levulinate synthesis from biorenewable feedstocks. Catal. Today 291, 187–194. doi: 10.1016/j.cattod.2016.12.019
|
Rizqullah, H., Yang, J., Lee, J.W., 2022. Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. Korean J. Chem. Eng. 39, 2754–2763. doi: 10.1007/s11814-022-1145-9
|
Sasaki, K., Sasaki, D., Tsuge, Y., Morita, M., Kondo, A., 2021. Enhanced methane production from cellulose using a two-stage process involving a bioelectrochemical system and a fixed film reactor. Biotechnol. Biofuels 14, 7. doi: 10.1186/s13068-020-01866-x
|
Sert, M., 2020. Catalytic effect of acidic deep eutectic solvents for the conversion of levulinic acid to ethyl levulinate. Renew. Energy 153, 1155–1162. doi: 10.1016/j.renene.2020.02.070
|
Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., Li, Y.J., Kuang, Y.D., Li, Y.F., Quispe, N., Yao, Y.G., Gong, A., Leiste, U.H., Bruck, H.A., Zhu, J.Y., Vellore, A., Li, H., Minus, M.L., Jia, Z., Martini, A., Li, T., Hu, L.B., 2018. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228. doi: 10.1038/nature25476
|
Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., Poliakoff, M., 2012. Valorization of biomass: deriving more value from waste. Science 337, 695–699. doi: 10.1126/science.1218930
|
Wang, Y.S., Shi, J.J., Chen, X.S., Chen, M.Q., Wang, J., Yao, J.M., 2022. Ethyl levulinate production from cellulose conversion in ethanol medium over high-efficiency heteropoly acids. Fuel 324, 124642. doi: 10.1016/j.fuel.2022.124642
|
Wu, Z.L., Yu, Y., Wu, H.W., 2023. Hydrothermal reactions of biomass-derived platform molecules: mechanistic insights into 5-hydroxymethylfurfural (5-HMF) formation during glucose and fructose decomposition. Energy Fuels 37, 2115–2126. doi: 10.1021/acs.energyfuels.2c03462
|
Xu, J.M., Xie, X.F., Wang, J.X., Jiang, J.C., 2016. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chem. 18, 3124–3138. doi: 10.1039/C5GC03070F
|
Yang, Y., Hu, C.W., Abu-Omar, M.M., 2012. Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system. Bioresour. Technol. 116, 190–194. doi: 10.1109/BMEI.2012.6513000
|
Zainol, M.M., Asmadi, M., Amin, N.A.S., Roslan, M.N.F., 2022. Glucose-derived bio-fuel additive via ethanolysis catalyzed by zinc modified sulfonated carbon. Mater. Today 57, 1008–1013.
|
Zhang, L.X., Tian, L., Xu, Z.Y., Wang, L., 2022. Direct production of ethyl levulinate from carbohydrates and biomass waste catalyzed by modified porous silica with multiple acid sites. Process. Biochem. 121, 152–162. doi: 10.1016/j.procbio.2022.06.036
|