Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Di Xie, Zhulan Liu, Yunfeng Cao, Sheng-I Yang, Chen Su, Mi Li. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 113-125. doi: 10.1016/j.jobab.2023.11.002
Citation: Di Xie, Zhulan Liu, Yunfeng Cao, Sheng-I Yang, Chen Su, Mi Li. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 113-125. doi: 10.1016/j.jobab.2023.11.002

Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction

doi: 10.1016/j.jobab.2023.11.002

We are grateful for the financial support by National Natural Science Foundation of China (No. 31670591)

Natural Science Foundation of Jiangsu Province (No. BK20160928). This work is also partially supported by the South Eastern Regional Sun Grant Centre and AgResearch at the University of Tennessee.

the fellowship of China Postdoctoral Science Foundation (No. 2022M711229)

  • Available Online: 2024-01-31
  • Publish Date: 2023-11-16
  • Water-soluble lignin-carbohydrate complex (LCC) rich in polysaccharides exhibits benign in vitro antioxidant activities and distinguishes high biocompatibility from lignin-rich LCC and lignin. However, the antioxidant activity of water-soluble LCCs remains to be improved and its structure-antioxidant relationship is still uncertain. Herein, structurally diversified water-soluble LCCs were isolated under different ball-milling pretreatment durations (4, 6, 8 h), extraction pathways (homogeneous and heterogeneous), and isolation routines (water extracts and residues after water extraction). Their structures were characterized by wet chemistry, chromatography and spectroscopies. Antioxidant activities were evaluated by ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl radicals scavenging rate (RDPPH). Results show that altering ball-milling duration and isolation procedures cause varied structures and antioxidant activities of the water-soluble LCCs. Specifically, prolonging ball-milling duration to 8 hours and homogeneous extraction can enhance their antioxidant activity through releasing more phenolic structures and promoting the extraction of high-molecular-weight LCCs via reducing mass-transfer resistance, respectively. As a result, the RDPPH of water-soluble LCCs reaches up to 97.35%, which is associated with the arabinan content with statistical significance (P < 0.05). This study provides new insights into the structure-antioxidation relationship of herbaceous LCC as potential antioxidants.


  • loading
  • [1]
    Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., Besar, N.A., 2023. Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. J. Bioresour. Bioprod. 8, 361-387.
    Al-Saeghi, S.S., Hossain, M.A., Al-Touby, S.S.J., 2022. Characterization of antioxidant and antibacterial compounds from aerial parts of Haplophyllum tuberculatum. J. Bioresour. Bioprod. 7, 52-62.
    Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H., 2011. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097-1110.
    Bhanja, S.K., Maity, P., Rout, D., Sen, I.K., Patra, S., 2022. A xylan from the fresh leaves of Piper betle: structural characterization and studies of bioactive properties. Carbohydr. Polym. 291, 119570.
    Cai, C., Hirth, K., Gleisner, R., Lou, H.M., Qiu, X.Q., Zhu, J.Y., 2020. Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤100℃: mode and utility of lignin esterification. Green Chem. 22, 1605-1617.
    Chen, M., Malaret, F., Firth, A.E.J., Verdía, P., Abouelela, A.R., Chen, Y.Y., Hallett, J.P., 2020. Design of a combined ionosolv-organosolv biomass fractionation process for biofuel production and high value-added lignin valorisation. Green Chem. 22, 5161-5178.
    Chen, W., Dong, T.T., Bai, F.T., Wang, J.L., Li, X.S., 2022. Lignin-carbohydrate complexes, their fractionation, and application to healthcare materials: a review. Int. J. Biol. Macromol. 203, 29-39.
    del Río, J.C., Rencoret, J., Prinsen, P., Martínez, Á.T., Ralph, J., Gutiérrez, A., 2012. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J. Agric. Food Chem. 60, 5922-5935.
    Du, X.Y., Gellerstedt, G., Li, J.B., 2013. Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J. 74, 328-338.
    Fujimoto, A., Matsumoto, Y., Chang, H.M., Meshitsuka, G., 2005. Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J. Wood Sci. 51, 89-91.
    Gan, T., Zhou, Q., Su, C., Xia, J.Y., Xie, D., Liu, Z.L., Cao, Y.F., 2021. Efficient isolation of organosolv lignin-carbohydrate complexes (LCC) with high antioxidative activity via introducing LiCl/DMSO dissolving. Int. J. Biol. Macromol. 181, 752-761.
    Giummarella, N., Lawoko, M., 2016. Structural basis for the formation and regulation of lignin-xylan bonds in birch. ACS Sustainable Chem. Eng. 4, 5319-5326.
    Giummarella, N., Pu, Y.Q., Ragauskas, A.J., Lawoko, M., 2019. A critical review on the analysis of lignin carbohydrate bonds. Green Chem. 21, 1573-1595.
    Gu, F., Wu, W.J., Wang, Z.G., Yokoyama, T., Jin, Y.C., Matsumoto, Y., 2015. Effect of complete dissolution in LiCl/DMSO on the isolation and characteristics of lignin from wheat straw internode. Ind. Crops Prod. 74, 703-711.
    Gu, J.Y., Zhang, H.H., Yao, H., Zhou, J., Duan, Y.Q., Ma, H.L., 2020. Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr. Polym. 235, 115939.
    Jiang, B., Zhang, Y., Gu, L.H., Wu, W.J., Zhao, H.F., Jin, Y.C., 2018a. Structural elucidation and antioxidant activity of lignin isolated from rice straw and alkali-oxygen black liquor. Int. J. Biol. Macromol. 116, 513-519.
    Jiang, B., Zhang, Y., Guo, T.Y., Zhao, H.F., Jin, Y.C., 2018b. Structural characterization of lignin and lignin-carbohydrate complex (LCC) from Ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers 10, 736.
    Jiang, B., Zhang, Y., Zhao, H.F., Guo, T.Y., Wu, W.J., Jin, Y.C., 2019. Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int. J. Biol. Macromol. 139, 21-29.
    Kim, K.H., Tsao, R., Yang, R., Cui, S.W., 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95, 466-473.
    Lancefield, C.S., Panovic, I., Deuss, P.J., Barta, K., Westwood, N.J., 2017. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem. 19, 202-214.
    Li, J.B., Martin-Sampedro, R., Pedrazzi, C., Gellerstedt, G., 2011. Fractionation and characterization of lignin-carbohydrate complexes (LCCs) from eucalyptus fibers. Holzforschung 65, 43-50.
    Liu, Q., Cao, X.J., Zhuang, X.H., Han, W., Guo, W.Q., Xiong, J., Zhang, X.L., 2017. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation: antioxidant activities and effects on the production of NO. Food Chem. 223, 49-53.
    Liu, Z.L., Cao, Y.F., Wang, Z.G., Ren, H., Amidon, T.E., Lai, Y.Z., 2015. The utilization of soybean straw. I. fiber morphology and chemical characteristics. BioResources 10, 2266-2280.
    Liu, Z.L., Meng, L.K., Chen, J.Q., Cao, Y.F., Wang, Z.G., Ren, H., 2016. The utilization of soybean straw III: isolation and characterization of lignin from soybean straw. Biomass Bioenergy 94, 12-20.
    Lo, T.C.T., Chang, C.A., Chiu, K.H., Tsay, P.K., Jen, J.F., 2011. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydr. Polym. 86, 320-327.
    Lourenço, A., Gominho, J., Marques, A.V., Pereira, H., 2012. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID. Bioresour. Technol. 123, 296-302.
    Luo, J., Liu, T.L., 2023. Electrochemical valorization of lignin: status, challenges, and prospects. J. Bioresour. Bioprod. 8, 1-14.
    Maitz, S., Schlemmer, W., Hobisch, M.A., Hobisch, J., Kienberger, M., 2020. Preparation and characterization of a water-soluble kraft lignin. Adv. Sustain. Syst. 4, 2000052.
    Mirpoor, S.F., Restaino, O.F., Schiraldi, C., Giosafatto, C.V.L., Ruffo, F., Porta, R., 2021. Lignin/carbohydrate complex isolated from Posidonia oceanica sea balls (egagropili): characterization and antioxidant reinforcement of protein-based films. Int. J. Mol. Sci. 22, 9147.
    Niu, H., Song, D., Mu, H.B., Zhang, W.X., Sun, F.F., Duan, J.Y., 2016. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 86, 587-593.
    Oliveira, L., Evtuguin, D., Cordeiro, N., Silvestre, A.J.D., 2009. Structural characterization of stalk lignin from banana plant. Ind. Crops Prod. 29, 86-95.
    Renault, E., Barbat-Rogeon, A., Chaleix, V., Calliste, C.A., Colas, C., Gloaguen, V., 2014. Partial structural characterization and antioxidant activity of a phenolic-xylan from Castanea sativa hardwood. Int. J. Biol. Macromol. 70, 373-380.
    Scalbert, A., Monties, B., Lallemand, J.Y., Guittet, E., Rolando, C., 1985. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24, 1359-1362.
    Singh, R., Singh, S., Trimukhe, K.D., Pandare, K.V., Bastawade, K.B., Gokhale, D.V., Varma, A.J., 2005. Lignin-carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr. Polym. 62, 57-66.
    Sluiter, A., 2008. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) Golden, Colo: National Renewable Energy Laboratory.
    Su, C., Gan, T., Liu, Z.L., Chen, Y., Zhou, Q., Xia, J.Y., Cao, Y.F., 2021. Enhancement of the antioxidant abilities of lignin and lignin-carbohydrate complex from wheat straw by moderate depolymerization via LiCl/DMSO solvent catalysis. Int. J. Biol. Macromol. 184, 369-379.
    Sun, R.C., Fang, J., Goodwin, A., Lawther, J., Bolton, A., 1999. Fractionation and characterization of ball-milled and enzyme lignins from abaca fibre. J. Sci. Food Agric. 79, 1091-1098.
    Sun, R.C., Lu, Q., Sun, X.F., 2001. Physico-chemical and thermal characterization of lignins from Caligonum monogoliacum and Tamarix spp. Polym. Degrad. Stab. 72, 229-238.
    Tarasov, D., Leitch, M., Fatehi, P., 2018. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol. Biofuels 11, 269.
    Thilakaratne, R., Tessonnier, J.P., Brown, R.C., 2016. Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites. Green Chem. 18, 2231-2239.
    Villaverde, J.J., Li, J.B., Ek, M., Ligero, P., de Vega, A., 2009. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 57, 6262-6270.
    Vinardell, M.P., Mitjans, M., 2017. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 18, 1219.
    Wang, J.Q., Hu, S.Z., Nie, S.P., Yu, Q., Xie, M.Y., 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell. Longev. 2016, 5692852.
    Wang, R., Zheng, L.M., Xu, Q.M., Xu, L., Wang, D.J., Li, J.Y., Lu, G., Huang, C.X., Wang, Y., 2021. Unveiling the structural properties of water-soluble lignin from gramineous biomass by autohydrolysis and its functionality as a bioactivator (anti-inflammatory and antioxidative). Int. J. Biol. Macromol. 191, 1087-1095.
    Wang, Y.L., Wu, J., Shen, R.H., Li, Y.B., Ma, G.F., Qi, S., Wu, W.J., Jin, Y.C., Jiang, B., 2023. A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin. J. Bioresour. Bioprod. 8, 306-317.
    Wu, F.F., Jia, X., Yin, L.J., Cheng, Y.Q., Miao, Y.X., Zhang, X.Q., 2019. The effect of hemicellulose and lignin on properties of polysaccharides in Lentinus edodes and their antioxidant evaluation. Molecules 24, 1834.
    Xie, D., Gan, T., Su, C., Han, Y., Liu, Z.L., Cao, Y.F., 2020. Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. Int. J. Biol. Macromol. 161, 315-324.
    Yang, X.H., Li, Z., Li, L., Li, N., Jing, F., Hu, L.H., Shang, Q.Q., Zhang, X., Zhou, Y.H., Pan, X.J., 2021. Depolymerization and demethylation of kraft lignin in molten salt hydrate and applications as an antioxidant and metal ion scavenger. J. Agric. Food Chem. 69, 13568-13577.
    Yilmaz-Turan, S., Jiménez-Quero, A., Menzel, C., de Carvalho, D.M., Lindström, M.E., Sevastyanova, O., Moriana, R., Vilaplana, F., 2020. Bio-based films from wheat bran feruloylated Arabinoxylan: effect of extraction technique, acetylation and feruloylation. Carbohydr. Polym. 250, 116916.
    You, T.T., Zhang, L.M., Zhou, S.K., Xu, F., 2015. Structural elucidation of lignin-carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Ind. Crops Prod. 71, 65-74.
    Zhang, H.N., Ren, H., Zhai, H.M., 2021. Analysis of phenolation potential of spruce kraft lignin and construction of its molecular structure model. Ind. Crops Prod. 167, 113506.
    Zhang, J.C., Wu, C.J., Yu, D.M., Zhu, Y.C., 2019a. Structural characterization of soluble lignin in the pre-hydrolysis liquor of bamboo-willow dissolving pulp. BioResources 15, 825-839.
    Zhang, Y.C., Wang, S., Xu, W.Y., Cheng, F., Pranovich, A., Smeds, A., Willför, S., Xu, C.L., 2019b. Valorization of lignin-carbohydrate complexes from hydrolysates of Norway spruce: efficient separation, structural characterization, and antioxidant activity. ACS Sustainable Chem. Eng. 7, 1447-1456.
    Zhao, B.C., Xu, J.D., Chen, B.Y., Cao, X.F., Yuan, T.Q., Wang, S.F., Charlton, A., Sun, R.C., 2018. Selective precipitation and characterization of lignin-carbohydrate complexes (LCCs) from Eucalyptus. Planta 247, 1077-1087.
    Zhao, B.T., Zhang, J., Yao, J., Song, S., Yin, Z.X., Gao, Q.Y., 2013. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Int. J. Biol. Macromol. 58, 320-328.
    Zhao, X.B., Liu, D.H., 2010. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Ind. Crops Prod. 32, 284-291.
    Zheng, L.M., Yu, P.J., Zhang, Y.B., Wang, P., Yan, W.J., Guo, B.S., Huang, C.X., Jiang, Q., 2021. Evaluating the bio-application of biomacromolecule of lignin-carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int. J. Biol. Macromol. 176, 13-25.
    Zhou, Q., Ou, Z.Q., Rao, X., Liu, Y., Liang, C., Zhang, L.M., Huo, C.Q., Du, X.Y., 2020. Lignin-carbohydrate complexes from coconut (Cocos nucifera) coir: fractionation, structural elucidation, and potential applications. BioResources 15, 7100-7117.
    Zijlstra, D.S., Lahive, C.W., Analbers, C.A., Figueirêdo, M.B., Wang, Z.W., Lancefield, C.S., Deuss, P.J., 2020. Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation. ACS Sustainable Chem. Eng. 8, 5119-5131.
    Zikeli, F., Ters, T., Fackler, K., Srebotnik, E., Li, J.B., 2016. Wheat straw lignin fractionation and characterization as lignin-carbohydrate complexes. Ind. Crops Prod. 85, 309-317.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (21) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint