Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Changjie Chen, Pengfei Xu, Xinhou Wang. Structure and mechanical properties of windmill palm fiber with different delignification treatments[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 102-112. doi: 10.1016/j.jobab.2023.12.001
Citation: Changjie Chen, Pengfei Xu, Xinhou Wang. Structure and mechanical properties of windmill palm fiber with different delignification treatments[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 102-112. doi: 10.1016/j.jobab.2023.12.001

Structure and mechanical properties of windmill palm fiber with different delignification treatments

doi: 10.1016/j.jobab.2023.12.001
Funds:

This research was funded by the special fund support for basic scientific research business expenses of central universities (no. 2232023G-01), the basalt fiber and composite key laboratory of Sichuan province Dazhou Research Institute of Basalt Fiber Industry (no. XXFC-2201), and the Opening Project of National Engineering Laboratory for Modern Silk, Soochow University (no. SDGC2244).

  • Available Online: 2024-01-31
  • Publish Date: 2023-12-10
  • The removal of lignin from natural cellulose fibers is a crucial step in preparing high-performance materials, such as compressed high-toughness composites. This process can eliminate non-cellulosic impurities, create abundant compressible pores, and expose a greater number of active functional groups. In this study, biomass waste windmill palm fiber was used as the raw material to prepare holocellulose fibers through various chemical treatments. The structure, chemical composition, Fourier transform infrared spectroscopy analysis, X-ray diffraction analysis, thermal properties, and mechanical properties, particularly fatigue performance, were studied. The sodium chlorite treated fiber had the highest crystallinity index (61.3%) and the most complete appearance structure. The sodium sulfite treated fiber had the highest tensile strength (227.34 ± 52.27) MPa. Hydroxide peroxide treatment removed most of the lignin and hemicellulose, increasing the cellulose content to 68.83% ± 0.65%. However, all the chemical treatments decreased the thermal property of the fibers.

     

  • loading
  • [1]
    Ahmad Ilyas, R., Sapuan, S.M., Ibrahim, R., Abral, H., Ishak, M.R., Zainudin, E.S., Asrofi, M., Atikah, M.S.N., Huzaifah, M.R.M., Radzi, A.M., Azammi, A.M.N., Shaharuzaman, M.A., Nurazzi, N.M., Syafri, E., Sari, N.H., Norrrahim, M.N.F., Jumaidin, R., 2019. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 8, 2753-2766.
    [2]
    Asyraf, M.R.M., Rafidah, M., Ebadi, S., Azrina, A., Razman, M.R., 2022. Mechanical properties of sugar palm lignocellulosic fibre reinforced polymer composites: a review. Cellulose 29, 6493-6516.
    [3]
    Bai, Y.F., Wang, W.Q., Zhang, Y.Y., Wang, X.W., Wang, X.Z., Shi, J.T., 2022. Effects of different delignification and drying methods on fiber properties of moso bamboo. Polymers 14, 5464.
    [4]
    Balaji, K V, Shirvanimoghaddam, K., Rajan, G.S., Ellis, A.V., Naebe, M., 2020. Surface treatment of basalt fiber for use in automotive composites. Mater. Today Chem. 17, 100334.
    [5]
    Chan, C.H., Wu, K.J., Young, W.B., 2023. The effect of densification on bamboo fiber and bamboo fiber composites. Cellulose 30, 4575-4585.
    [6]
    Chen, C.J., Chen, G.C., Li, X., Guo, H.Y., Wang, G.H., 2017a. The influence of chemical treatment on the mechanical properties of windmill palm fiber. Cellulose 24, 1611-1620.
    [7]
    Chen, C.J., Sun, G.X., Chen, G.C., Li, X., Wang, G.H., 2017b. Microscopic structural features and properties of single fibers from different morphological parts of the windmill palm. BioResources 12, 3504-3520.
    [8]
    Chen, C.J., Tan, J., Wang, X.H., 2022. Mechanical properties of toughened windmill palm fibre with different chemical compositions. Carbohydr. Polym. 297, 119996.
    [9]
    Cheng, C., Guo, R.H., Lan, J.W., Jiang, S.X., Du, Z.F., Zhao, L.D., Peng, L.H., 2018. Preparation and characterization of lotus fibers from lotus stems. J. Text. Inst. 109, 1322-1328.
    [10]
    Cheng, D., Weng, B.B., Chen, Y.X., Zhai, S.C., Wang, C.X., Xu, R.M., Guo, J.K., Lv, Y., Shi, L.L., Guo, Y., 2020. Characterization of potential cellulose fiber from Luffa vine: a study on physicochemical and structural properties. Int. J. Biol. Macromol. 164, 2247-2257.
    [11]
    Chungsiriporn, J., Khunthongkaew, P., Wongnoipla, Y., Sopajarn, A., Karrila, S., Iewkittayakorn, J., 2022. Fibrous packaging paper made of oil palm fiber with beeswax-chitosan solution to improve water resistance. Ind. Crops Prod. 177, 114541.
    [12]
    Deeksha, B., Sadanand, V., Hariram, N., Rajulu, A.V., 2021. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 6, 75-81.
    [13]
    Derradji, M., Khiari, K., Mehelli, O., Abdous, S., Habes, A., Ramdani, N., Zegaoui, A., Liu, W.B., Daham, A., 2023. Mechanical and thermal properties of fully green composites from vanillin-based benzoxazine and silane surface modified chopped basalt fibers. High Perform. Polym. 35, 412-425.
    [14]
    Ding, L.H., Han, X.S., Cao, L.H., Chen, Y.M., Ling, Z., Han, J.Q., He, S.J., Jiang, S.H., 2022a. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J. Bioresour. Bioprod. 7, 190-200.
    [15]
    Ding, Q.Q., Rao, J., Lv, Z.W., Gong, X., Lü, B.Z., Guan, Y., Ren, J.L., Peng, F., 2022b. Efficient preparation of holocellulose nanofibers and their reinforcement potential. Cellulose 29, 8229-8242.
    [16]
    do Nascimento, H.M., dos Santos, A., Duarte, V.A., Bittencourt, P.R.S., Radovanovic, E., Fávaro, S.L., 2021. Characterization of natural cellulosic fibers from Yucca aloifolia L. leaf as potential reinforcement of polymer composites. Cellulose 28, 5477-5492.
    [17]
    Elseify, L.A., Midani, M., El-Badawy, A.A., Awad, S., Jawaid, M., 2023. Comparative study of long date palm (Phoenix dactylifera L.) midrib and spadix fibers with other commercial leaf fibers. Cellulose 30, 1927-1942.
    [18]
    Fadele, O., Oguocha, I.N.A., Odeshi, A.G., Soleimani, M., Tabil, L.G., 2019. Effect of chemical treatments on properties of raffia palm (Raphia farinifera) fibers. Cellulose 26, 9463-9482.
    [19]
    Gao, X., Zhu, D.J., Fan, S.T., Rahman, M.Z., Guo, S.C., Chen, F., 2022. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: a review. J. Mater. Res. Technol. 19, 1162-1190.
    [20]
    Hachaichi, A., Nekkaa, S., Amroune, S., Jawaid, M., Alothman, O.Y., Dufresne, A., 2022. Effect of alkali surface treatment and compatibilizer agent on tensile and morphological properties of date palm fibers-based high density polyethylene biocomposites. Polym. Compos. 43, 7211-7221.
    [21]
    Ju, Z.H., Zhan, T.Y., Brosse, N., Wei, Y., Zhang, H.Y., Cui, J.X., Lu, X.N., 2022. Interfacial properties of windmill palm (Trachycarpus fortunei) fiber reinforced laminated veneer lumber (LVL) composites under high voltage electrostatic field (HVEF). Ind. Crops Prod. 180, 114795.
    [22]
    Keskin, O.Y., Dalmis, R., Kilic, G.B., Seki, Y., Koktas, S., 2020. Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose 27, 9963-9974.
    [23]
    Koch, S.M., Goldhahn, C., Müller, F.J., Yan, W.Q., Pilz-Allen, C., Bidan, C.M., Ciabattoni, B., Stricker, L., Fratzl, P., Keplinger, T., Burgert, I., 2023. Anisotropic wood-hydrogel composites: extending mechanical properties of wood towards soft materials' applications. Mater. Today Bio 22, 100772.
    [24]
    Li, J., Zhang, X.X., Zhu, J.W., Yu, Y., Wang, H.K., 2020a. Structural, chemical, and multi-scale mechanical characterization of waste windmill palm fiber (Trachycarpus fortunei). J. Wood Sci. 66, 1-9.
    [25]
    Li, K., Wang, S.N., Chen, H., Yang, X., Berglund, L.A., Zhou, Q., 2020b. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653.
    [26]
    Li, Z.H., Chen, C.J., Mi, R.Y., Gan, W.T., Dai, J.Q., Jiao, M.L., Xie, H., Yao, Y.G., Xiao, S.L., Hu, L.B., 2020c. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32, e1906308.
    [27]
    Lyu, P., Zhang, Y., Wang, X.G., Hurren, C., 2021. Degumming methods for bast fibers—a mini review. Ind. Crops Prod. 174, 114158.
    [28]
    Manoel, A.F., Claro, P.I.C., Galvani, F., Mattoso, L.H.C., Marconcini, J.M., Mantovani, G.L., 2022. Poly(ε-caprolactone) blended with thermoplastic waxy starch matrix reinforced with cellulose nanocrystals from Macauba (Acrocomia spp.) Rachis. Ind. Crops Prod. 177, 114446.
    [29]
    Marin, D., Chiarello, L.M., Wiggers, V.R., de Oliveira, A.D., Botton, V., 2023. Effect of coupling agents on properties of vegetable fiber polymeric composites: review. Polímeros 33, e20230012.
    [30]
    Ou, J.F., Hu, S.N., Yao, L., Chen, Y.A., Qi, H.S., Yue, F.X., 2023. Simultaneous strengthening and toughening lignin/cellulose nanofibril composite films: effects from flexible hydrogen bonds. Chem. Eng. J. 453, 139770.
    [31]
    Quan, D., Moloney, P., Carolan, D., Abourayana, H., Ralph, C., Ivankovic, A., Dowling, D., Murphy, N., 2021. Synergistic toughening and electrical functionalization of an epoxy using MWCNTs and silane-/plasma-activated basalt fibers. J. Appl. Polym. Sci. 138, e49605.
    [32]
    Ribeiro, V.T., da Costa Filho, J.D.B., de Araújo Padilha, C.E., dos Santos, E.S., 2023. Using Tween 80 in pretreatment, enzymatic hydrolysis, and fermentation processes for enhancing ethanol production from green coconut fiber. Biomass Convers. Biorefin., 1-16.
    [33]
    Richely, E., Bourmaud, A., Placet, V., Guessasma, S., Beaugrand, J., 2022. A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects. Prog. Mater. Sci. 124, 100851.
    [34]
    Segal, L., Creely, J.J., Martin, A.E. Jr, Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786-794.
    [35]
    Seki, Y., Selli, F., Erdoğan, Ü.H., Atagür, M., Seydibeyoğlu, M.Ö., 2022. A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose 29, 4877-4918.
    [36]
    Siva, R., Valarmathi, T.N., Palanikumar, K., Samrot, A.V., 2020. Study on a novel natural cellulosic fiber from Kigelia africana fruit: characterization and analysis. Carbohydr. Polym. 244, 116494.
    [37]
    Song, D.Q., Wang, B., Tao, W.C., Wang, X., Zhang, W., Dai, M.F., Li, J.Y., Zhou, Z.W., 2022. Synergistic reinforcement mechanism of basalt fiber/cellulose nanocrystals/polypropylene composites. Nanotechnol. Rev. 11, 3020-3030.
    [38]
    Song, J.W., Chen, C.J., Yang, Z., Kuang, Y.D., Li, T., Li, Y.J., Huang, H., Kierzewski, I., Liu, B.Y., He, S.M., Gao, T.T., Yuruker, S.U., Gong, A., Yang, B., Hu, L.B., 2018a. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12, 140-147.
    [39]
    Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., Li, Y.J., Kuang, Y.D., Li, Y.F., Quispe, N., Yao, Y.G., Gong, A., Leiste, U.H., Bruck, H.A., Zhu, J.Y., Vellore, A., Li, H., Minus, M.L., Jia, Z., Martini, A., Li, T., Hu, L.B., 2018b. Processing bulk natural wood into a high-performance structural material. Nature 554, 224-228.
    [40]
    Su, G.M., Xiong, J.H., Li, Q.S., Luo, S.Y., Zhang, Y.P., Zhong, T.H., Harper, D.P., Tang, Z.G., Xie, L.K., Chai, X.J., Zhang, L.P., Wu, C.H., Du, G.B., Wang, S.Q., Xu, K.M., 2023. Gaseous formaldehyde adsorption by eco-friendly, porous bamboo carbon microfibers obtained by steam explosion, carbonization, and plasma activation. Chem. Eng. J. 455, 140686.
    [41]
    Suárez, L., Barczewski, M., Kosmela, P., Marrero, M.D., Ortega, Z., 2023. Giant reed (Arundo donax L.) fiber extraction and characterization for its use in polymer composites. J. Nat. Fibres. 20, 1-14.
    [42]
    Sun, Y., Xu, A.C., Chen, C.J., Luo, C., Bao, L.M., 2022. Effect of alkali and silane treatments on properties of green composites based on ramie fibers and cellulose acetate resin. BioResources 17, 2390-2402.
    [43]
    Sweygers, N., Depuydt, D.E.C., Eyley, S., Thielemans, W., Mosleh, Y., Ivens, J., Dewil, R., Appels, L., Van Vuure, A.W., 2022. Prediction of the equilibrium moisture content based on the chemical composition and crystallinity of natural fibres. Ind. Crops Prod. 186, 115187.
    [44]
    Taieh, N.K., Khudhur, S.K., Fahad, E.A.A., Zhou, Z.W., Hui, D., 2023. High mechanical performance of 3-aminopropyl triethoxy silane/epoxy cured in a sandwich construction of 3D carbon felts foam and woven basalt fibers. Nanotechnol. Rev. 12, 1-14.
    [45]
    Tengsuthiwat, J., Vinod, A., Srisuk, R., Techawinyutham, L., Rangappa, S.M., Siengchin, S., 2022. Thermo-mechanical characterization of new natural cellulose fiber from Zmioculus zamiifolia. J. Polym. Environ. 30, 1391-1406.
    [46]
    Tian, J.R., Qian, S.P., Zhang, Z.Y., Li, Z.J., Wan, Y., 2023. A facile approach for preparing nanofibrillated cellulose from bleached corn stalk with tailored surface functions. Cellulose 30, 5641-5656.
    [47]
    Vinod, A., Sanjay, M.R., Siengchin, S., Fischer, S., 2021. Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: influence of surface modification techniques. Constr. Build. Mater. 303, 124509.
    [48]
    Wang, J.W., Han, X.S., Wu, W.J., Wang, X.Y., Ding, L.H., Wang, Y.L., Li, S.S., Hu, J.P., Yang, W.S., Zhang, C.M., Jiang, S.H., 2023a. Oxidation of cellulose molecules toward delignified oxidated hot-pressed wood with improved mechanical properties. Int. J. Biol. Macromol. 231, 123343.
    [49]
    Wang, S.N., Li, L.W., Zha, L., Koskela, S., Berglund, L.A., Zhou, Q., 2023b. Wood xerogel for fabrication of high-performance transparent wood. Nat. Commun. 14, 2827.
    [50]
    Wang, Y.Y., Wang, X.Q., Li, Y.Q., Huang, P., Yang, B., Hu, N., Fu, S.Y., 2021. High-performance bamboo steel derived from natural bamboo. ACS Appl. Mater. Interfaces 13, 1431-1440.
    [51]
    Wu, J.Y., Zong, Y.X., Zhong, T.H., Zhang, W.F., Chen, H., 2023. Bamboo slivers with high strength and toughness prepared by alkali treatment at a proper temperature. J. Wood Sci. 69, 1-12.
    [52]
    Xia, Q.Q., Chen, C.J., Yao, Y.G., He, S.M., Wang, X.Z., Li, J.G., Gao, J.L., Gan, W.T., Jiang, B., Cui, M.J., Hu, L.B., 2021. In situ lignin modification toward photonic wood. Adv. Mater. 33, e2001588.
    [53]
    Yang, J.L., Ching, Y.C., Chuah, C.H., Hai, N.D., Singh, R., Nor, A.R.M., 2021. Preparation and characterization of starch-based bioplastic composites with treated oil palm empty fruit bunch fibers and citric acid. Cellulose 28, 4191-4210.
    [54]
    Yang, X., Berglund, L.A., 2021. Structural and ecofriendly holocellulose materials from wood: microscale fibers and nanoscale fibrils. Adv. Mater. 33, e2001118.
    [55]
    Yap, J.Y., Hii, C.L., Ong, S.P., Lim, K.H., Abas, F., Pin, K.Y., 2021. Quantification of carpaine and antioxidant properties of extracts from Carica papaya plant leaves and stalks. J. Bioresour. Bioprod. 6, 350-358.
    [56]
    Zhang, X.F., Wang, H.B., Chen, Z.J., Guo, S.Y., Fu, Y.A., Liu, T.A., 2022. Fabrication of ionic wood crosslinked by Ca2+ with high strength, toughness, and weather resistance. J. Mater. Res. Technol. 21, 5045-5055.
    [57]
    Zhang, Z.S., Fu, K.K., Li, Y., 2021. Improved interlaminar fracture toughness of carbon fiber/epoxy composites with a multiscale cellulose fiber interlayer. Compos. Commun. 27, 100898.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (30) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return