Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Bianjing Sun, Ping Wang, Jingang Zhang, Jianbin Lin, Lingling Sun, Xiaokun Wang, Chuntao Chen, Dongping Sun. In situ biosynthesis of bacterial cellulose hydrogel spheroids with tunable dimensions[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 90-101. doi: 10.1016/j.jobab.2023.12.003
Citation: Bianjing Sun, Ping Wang, Jingang Zhang, Jianbin Lin, Lingling Sun, Xiaokun Wang, Chuntao Chen, Dongping Sun. In situ biosynthesis of bacterial cellulose hydrogel spheroids with tunable dimensions[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 90-101. doi: 10.1016/j.jobab.2023.12.003

In situ biosynthesis of bacterial cellulose hydrogel spheroids with tunable dimensions

doi: 10.1016/j.jobab.2023.12.003
Funds:

The authors acknowledge financial support from National Natural Science Foundation of China (No. 51803092

No. 51873087), Fundamental Research Funds for the Central Universities (No. 30920130121001), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, China), project funded by Jiangsu Funding Program for Excellent Postdoctoral Talent.

  • Available Online: 2024-01-31
  • Publish Date: 2023-12-26
  • Bacterial cellulose (BC) hydrogel spheroid plays a significant role in diverse fields due to its spatial 3D structure and properties. In the present work, a series of BC spheroids with controllable size and shape was obtained via an in situ biosynthesis. Crucial factors for fabricating BC spheroid including inoculum concentration of 1.35 × 103 CFU/mL, shaking speeds at 100 r/min, and 48-96 h incubation time during the biosynthetic process, were comprehensively established. An operable mechanism model for tuning the size of BC spheroids from 0.4 to 5.0 mm was proposed with a fresh feeding medium strategy of dynamic culture. The resulting BC spheroids exhibit an interactive 3D network of nanofibers, a crystallinity index of 72.3 %, a specific surface area of 91.2 m2/g, and good cytocompatibility. This study reinforces the understanding of BC spheroid formation and explores new horizons for the design of BC spheroids-derived functional matrix materials for medical care.

     

  • loading
  • [1]
    Argel, S., Castaño, M., Jimenez, D.E., Rodríguez, S., Vallejo, M.J., Castro, C.I., Osorio, M.A., 2022. Assessment of bacterial nanocellulose loaded with acetylsalicylic acid or povidone-iodine as bioactive dressings for skin and soft tissue infections. Pharmaceutics 14, 1661.
    [2]
    Atila, D., Karataş, A., Keskin, D., Tezcaner, A., 2022. Pullulan hydrogel-immobilized bacterial cellulose membranes with dual-release of vitamin C and E for wound dressing applications. Int. J. Biol. Macromol. 218, 760-774.
    [3]
    Badshah, M., Ullah, H., He, F., Wahid, F., Farooq, U., Andersson, M., Khan, T., 2020. Development and evaluation of drug loaded regenerated bacterial cellulose-based matrices as a potential dosage form. Front. Bioeng. Biotechnol. 8, 579404.
    [4]
    Bitterman, L.A., Martinez, A., Mulholland, C., Somerville, T., Prieto-Centurion, D., Zodrow, K.R., 2021. Bacterial cellulose spheres that encapsulate solid materials. J. Vis. Exp., (168). e62286.
    [5]
    Caro-Astorga, J., Walker, K.T., Herrera, N., Lee, K.Y., Ellis, T., 2021. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 12, 5027.
    [6]
    Chen, C.T., Ding, W.X., Zhang, H., Zhang, L., Huang, Y., Fan, M.M., Yang, J.Z., Sun, D.P., 2022. Bacterial cellulose-based biomaterials: from fabrication to application. Carbohydr. Polym. 278, 118995.
    [7]
    Chen, C.T., Qian, J.S., Chen, H.W., Zhang, H., Yang, L., Jiang, X.H., Zhang, X., Li, X.Y., Ma, J., Sun, D.P., 2021. Molecular origin of the biologically accelerated mineralization of hydroxyapatite on bacterial cellulose for more robust nanocomposites. Nano Lett. 21, 10292-10300.
    [8]
    Ciecholewska-Juśko, D., Junka, A., Fijałkowski, K., 2022. The cross-linked bacterial cellulose impregnated with octenidine dihydrochloride-based antiseptic as an antibacterial dressing material for highly-exuding, infected wounds. Microbiol. Res. 263, 127125.
    [9]
    Diaz-Ramirez, J., Urbina, L., Eceiza, A., Retegi, A., Gabilondo, N., 2021. Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int. J. Biol. Macromol. 191, 1212-1220.
    [10]
    Droguet, B.E., Liang, H.L., Frka-Petesic, B., Parker, R.M., De Volder, M.F.L., Baumberg, J.J., Vignolini, S., 2022. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat. Mater. 21, 352-358.
    [11]
    Drozd, R., Szymańska, M., Rakoczy, R., Junka, A., Szymczyk, P., Fijałkowski, K., 2019. Functionalized magnetic bacterial cellulose beads as carrier for lecitase® ultra immobilization. Appl. Biochem. Biotechnol. 187, 176-193.
    [12]
    Du, K.F., Li, S.K., Zhao, L.S., Qiao, L.Z., Ai, H., Liu, X.H., 2018. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption. ACS Sustainable Chem. Eng. 6, 17068-17075.
    [13]
    Du, K.F., Yan, M., Wang, Q.Y., Song, H., 2010. Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J. Chromatogr. A 1217, 1298-1304.
    [14]
    Fucina, G., Cesca, K., Berti, F.V., Biavatti, M.W., Porto, L.M., 2022. Melanoma growth in non-chemically modified translucid bacterial nanocellulose hollow and compartimentalized spheres. Biochim. Biophys. Acta Gen. Subj. 1866, 130183.
    [15]
    Gebeyehu, E.K., Sui, X.F., Adamu, B.F., Beyene, K.A., Tadesse, M.G., 2022. Cellulosic-based conductive hydrogels for electro-active tissues: a review summary. Gels 8, 140.
    [16]
    Gilbert, C., Tang, T.C., Ott, W., Dorr, B.A., Shaw, W.M., Sun, G.L., Lu, T.K., Ellis, T., 2021. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691-700.
    [17]
    Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., Pulvirenti, A., 2021. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 113, 106454.
    [18]
    Hu, Y., Catchmark, J.M., Vogler, E.A., 2013. Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14, 3444-3452.
    [19]
    Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., Bielecki, S., 2002. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 29, 189-195.
    [20]
    Lazarini, S.C., Yamada, C., da Nóbrega, T.R., Lustri, W.R., 2022. Production of sphere-like bacterial cellulose in cultivation media with different carbon sources: a promising sustained release system of rifampicin. Cellulose 29, 6077-6092.
    [21]
    Lin, W.C., Lien, C.C., Yeh, H.J., Yu, C.M., Hsu, S.H., 2013. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603-611.
    [22]
    Meng, C.R., Hu, J.G., Gourlay, K., Yu, C.W., Saddler, J.N., 2019. Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose 26, 8325-8336.
    [23]
    Munir, M., Muhammad, N., Uroos, M., Mustafa, W., Sharif, F., 2023. Ionic liquid based treatment: a potential strategy to modify bacterial cellulose. ChemBioEng Rev. 10, 529-540.
    [24]
    Naserian, F., Mesgar, A.S., 2022. Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles. Colloids Surf. B Biointerfaces 218, 112729.
    [25]
    Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R., 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B Eng. 75, 176-200.
    [26]
    Portal, O., Clark, W.A., Levinson, D.J., 2009. Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds 21, 1-3.
    [27]
    Ross, P., Mayer, R., Benziman, M., 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35-58.
    [28]
    Shi, L., Lv, H.J., Chen, C.T., Cui, F.M., Zhang, L., Cao, J.P., Proietti Zaccaria, R., Zhang, Q., Sun, D.P., 2022a. Regulation of gut microbiome with redox responsible bacterial cellulose hydrogel for precision chemo-radiotherapy of intestinal cancer. Chem. Eng. J. 446, 137340.
    [29]
    Shi, L., Wang, T., Yang, L., Chen, C.T., Dou, R., Yang, X.L., Sun, B.J., Zhou, B.J., Zhang, L., Sun, D.P., 2022b. Enhanced mechanical properties and biocompatibility on BC/HAp composite through calcium gluconate fortified bacterial. Carbohydr. Polym. 281, 119085.
    [30]
    Shibazaki, H., Saito, M., Kuga, S., Okano, T., 1998. Native cellulose II production by Acetobacter xylinum under physical constraints. Cellulose 5, 165-173.
    [31]
    Singhania R.R., Patel A.K., Tseng Y.S., Kumar V., Chen C.W., Haldar D., Saini J.K., Dong C.D., 2022. Developments in bioprocess for bacterial cellulose production. Bioresour. Technol. 344, 126343.
    [32]
    Sun, B.J., Lin, J.B., Liu, M.D., Li, W.P., Yang, L., Zhang, L., Chen, C.T., Sun, D.P., 2022. In situ biosynthesis of biodegradable functional bacterial cellulose for high-efficiency particulate air filtration. ACS Sustainable Chem. Eng. 10, 1644-1652.
    [33]
    Urbina, L., Eceiza, A., Gabilondo, N., Corcuera, M.Á., Retegi, A., 2020. Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. Int. J. Biol. Macromol. 163, 1249-1260.
    [34]
    Wang, J., Tavakoli, J., Tang, Y.H., 2019. Bacterial cellulose production, properties and applications with different culture methods: a review. Carbohydr. Polym. 219, 63-76.
    [35]
    Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F., 1998. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5, 187-200.
    [36]
    Xiong, X.P., Zhang, L.N., Wang, Y.F., 2005. Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane. J. Chromatogr. A 1063, 71-77.
    [37]
    Zhang, H., Ye, C., Xu, N., Chen, C.T., Chen, X., Yuan, F.S., Xu, Y.H., Yang, J.Z., Sun, D.P., 2017. Reconstruction of a genome-scale metabolic network of Komagataeibacter nataicola RZS01 for cellulose production. Sci. Rep. 7, 7911.
    [38]
    Zhou, L.L., Sun, D.P., Wu, Q.H., Yang, J.Z., Yang, S.L., 2007. Influence of culture mode on bacterial cellulose production and its structure and property. Acta Microbiol. Sin. 47, 914-917.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return