Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Amal Mlhem, Thomas Teklebrhan, Evenezer Bokuretsion, Basim Abu-Jdayil. Development of sustainable thermal insulation based on bio-polyester filled with date pits[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 74-89. doi: 10.1016/j.jobab.2023.12.004
Citation: Amal Mlhem, Thomas Teklebrhan, Evenezer Bokuretsion, Basim Abu-Jdayil. Development of sustainable thermal insulation based on bio-polyester filled with date pits[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 74-89. doi: 10.1016/j.jobab.2023.12.004

Development of sustainable thermal insulation based on bio-polyester filled with date pits

doi: 10.1016/j.jobab.2023.12.004
Funds:

This work was financially supported by UAE University (SURE+ 2022 Grant #G00003848).

  • Available Online: 2024-01-31
  • Publish Date: 2023-12-26
  • Date palm pit (DPP)-filled poly (-hydroxybutyrate) (PHB) composites were prepared, evaluated, and characterized to determine their thermal insulation ability. Thermal conductivity values ranged between 0.086 and 0.100 W/(m·K). At a maximum filler concentration (50% (w)), the specific heat capacity and thermal diffusivity were 1 183 J/(kg·K) and 0.068 9 mm2/s, respectively. The DPP increased the thermal stability, and the highest compressive strength obtained was 80 MPa at 30% filler content. The PHB-DPP composites exhibited promising water absorption (less than 6%) and tensile strength (6-14 MPa). Date-pit-based PHB composites could be used in sustainable building engineering and cleaner production.

     

  • loading
  • [1]
    Abas R.A., 2005. Experimental studies of the thermal diffusivities concerning some industrially important systems. 0976-0976.
    [2]
    Abu-Jdayil B., Al-Malah K., 2008. Jordanian clay-based heat insulator composites: mechanical properties. J. Reinf. Plast. Compos. 27, 1559-1568.
    [3]
    Abu-Jdayil B., Hittini W., Mourad A.H., 2019a. Development of date pit-polystyrene thermoplastic heat insulator material: physical and thermal properties. Int. J. Polym. Sci. 2019, 1697627.
    [4]
    Abu-Jdayil B., Mourad A.H.I., Hussain A., 2016. Investigation on the mechanical behavior of polyester-scrap tire composites. Constr. Build. Mater. 127, 896-903.
    [5]
    Abu-Jdayil B., Mourad A.H., Hittini W., Hassan M., Hameedi S., 2019b. Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr. Build. Mater. 214, 709-735.
    [6]
    Abu-Jdayil B., Mourad A.H.I., Hussain A., Al Abdallah H., 2022. Thermal insulation and mechanical characteristics of polyester filled with date seed wastes. Constr. Build. Mater. 315, 125805.
    [7]
    Abu-Jdayil B., Barkhad M.S., Mourad A.-H.I., Iqbal M.Z., 2021. Date palm wood waste-based composites for green thermal insulation boards. J. Build. Eng. 43, 103224.
    [8]
    Adebayo T.S., Ullah S., Kartal M.T., Ali K., Pata U.K., Ağa M., 2023. Endorsing sustainable development in BRICS: the role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Sci. Total Environ. 859, 160181.
    [9]
    Al Abdallah H., Abu-Jdayil B., Iqbal M.Z., 2022. Improvement of mechanical properties and water resistance of bio-based thermal insulation material via silane treatment. J. Clean. Prod. 346, 131242.
    [10]
    Al Marri M.G., Al-Ghouti M.A., Shunmugasamy V.C., Zouari N., 2021. Date pits based nanomaterials for thermal insulation applications-towards energy efficient buildings in Qatar. PLoS One 16, e0247608.
    [11]
    Al-Absi R.S., Khan M., Abu-Dieyeh M.H., Ben-Hamadou R., Nasser M.S., Al-Ghouti M.A., 2023. The recovery of strontium ions from seawater reverse osmosis brine using novel composite materials of ferrocyanides modified roasted date pits. Chemosphere 311, 137043.
    [12]
    Al-Mawali M., Al-Habsi N., Rahman M.S., 2021. Thermal characteristics and proton mobility of date-pits and their alkaline treated fibers. Food Eng. Rev. 13, 236-246.
    [13]
    Arioz O., Karasu B., Kaya G., Arslan G., Tuncan M., Tuncan A., Korkut M., Kıvrak S., 2008. A preliminary research on the properties of lightweight expanded clay aggregate. J. Aust. Ceram. Soc. 44, 23-30.
    [14]
    Arora N.K., 2018. Environmental sustainability: necessary for survival. Environ. Sustain. 1, 1-2.
    [15]
    Avecilla-Ramírez A.M., del Rocío López-Cuellar M., Vergara-Porras B., Rodríguez-Hernández A.I., Vázquez-Núñez E., 2020. Characterization of poly-hydroxybutyrate/luffa fibers composite material. BioResources 15, 7159-7177.
    [16]
    Barkhad M.S., Abu-Jdayil B., Iqbal M.Z., Mourad A.H.I., 2020. Thermal insulation using biodegradable poly(lactic acid)/date pit composites. Constr. Build. Mater. 261, 120533.
    [17]
    Benchouia H.E., Guerira B., Chikhi M., Boussehel H., Tedeschi C., 2023. An experimental evaluation of a new eco-friendly insulating material based on date palm fibers and polystyrene. J. Build. Eng. 65, 105751.
    [18]
    Cabeza L.F., Castell A., Medrano M., Martorell I., Pérez G., Fernández I., 2010. Experimental study on the performance of insulation materials in Mediterranean construction. Energy Build. 42, 630-636.
    [19]
    Chin C.O., Yang X., Paul S.C., Wong L.S., Kong S.Y., 2020. Development of thermal energy storage lightweight concrete using paraffin-oil palm kernel shell-activated carbon composite. J. Clean. Prod. 261, 121227.
    [20]
    Christian S.J., Billington S.L., 2011. Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Compos. B Eng. 42, 1920-1928.
    [21]
    da Silva Moura A., Demori R., Leão R.M., Crescente Frankenberg C.L., Campomanes Santana R.M., 2019. The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mater. Today Commun. 18, 191-198.
    [22]
    de Koning G.J.M., Scheeren A.H.C., Lemstra P.J., Peeters M., Reynaers H., 1994. Crystallization phenomena in bacterial poly [(R)-3-hydroxybutyrate]: 3. Toughening via texture changes. Polymer 35, 4598-4605.
    [23]
    Faruk O., Bledzki A.K., Fink H.P., Sain M., 2014. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299, 9-26.
    [24]
    García Sánchez G.F., Guzmán López R.E., Gonzalez-Lezcano R.A., 2021. Fique as a sustainable material and thermal insulation for buildings: study of its decomposition and thermal conductivity. Sustainability 13, 7484.
    [25]
    García M.A., Martino M.N., Zaritzky N.E., 2000. Lipid addition to improve barrier properties of edible starch-based films and coatings. J. Food Sci. 65, 941-944.
    [26]
    Getachew A., Woldesenbet F., 2016. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Res. Notes 9, 509.
    [27]
    Ghazanfari A., Emami S., Panigrahi S., Tabil L.G., 2008. Thermal and mechanical properties of blends and composites from HDPE and date pits particles. J. Compos. Mater. 42, 77-89.
    [28]
    Goli E., Parikh N.A., Yourdkhani M., Hibbard N.G., Moore J.S., Sottos N.R., Geubelle P.H., 2020. Frontal polymerization of unidirectional carbon-fiber-reinforced composites. Compos. A Appl. Sci. Manuf. 130, 105689.
    [29]
    González-López J.R., Juárez-Alvarado C.A., Ayub-Francis B., Mendoza-Rangel J.M., 2018. Compaction effect on the compressive strength and durability of stabilized earth blocks. Constr. Build. Mater. 163, 179-188.
    [30]
    Graupner N., Müssig J., 2011. A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos. A Appl. Sci. Manuf. 42, 2010-2019.
    [31]
    Gunning M.A., Geever L.M., Killion J.A., Lyons J.G., Higginbotham C.L., 2013. Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polym. Test. 32, 1603-1611.
    [32]
    Gupta M.K., Singh R., 2019. PLA-coated sisal fibre-reinforced polyester composite: water absorption, static and dynamic mechanical properties. J. Compos. Mater. 53, 65-72.
    [33]
    Hassan A., Muhammad Rafiq M.I., Zainal Ariffin M.I., 2019. Improving thermal and mechanical properties of injection moulded kenaf fibre-reinforced polyhydroxy-butyrate composites through fibre surface treatment. BioResources 14, 3101-3116.
    [34]
    Hassan A., Salleh N.M., Yahya R., Sheikh M.R.K., 2011. Fiber length, thermal, mechanical, and dynamic mechanical properties of injection-molded glass-fiber/polyamide 6, 6: plasticization effect. J. Reinf. Plast. Compos. 30, 488-498.
    [35]
    Hittini W., Abu-Jdayil B., Mourad A.H., 2021. Development of date pit-polystyrene thermoplastic heat insulator material: mechanical properties. J. Thermoplast. Compos. Mater. 34, 472-489.
    [36]
    Hosokawa M.N., Darros A.B., da Silva Moris V.A., de Paiva J.M.F., 2016. Polyhydroxybutyrate composites with random mats of sisal and coconut fibers. Mat. Res. 20, 279-290.
    [37]
    Huner U., 2018. Effect of chemical surface treatment on flax-reinforced epoxy composite. J. Nat. Fibres. 15, 808-821.
    [38]
    Jerman M., Černý R., 2012. Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy Build. 53, 39-46.
    [39]
    Jin X., Wang W.Y., Xiao C.F., Lin T., Bian L.N., Hauser P., 2016. Improvement of coating durability, interfacial adhesion and compressive strength of UHMWPE fiber/epoxy composites through plasma pre-treatment and polypyrrole coating. Compos. Sci. Technol. 128, 169-175.
    [40]
    Kaliappan S., Velumayil R., Natrayan L., Pravin P., 2023. Mechanical, DMA, and fatigue behavior of Vitis vinifera stalk cellulose Bambusa vulgaris fiber epoxy composites. Polym. Compos. 44, 2115-2121.
    [41]
    Khoukhi M., Dar Saleh A., Mohammad A.F., Hassan A., Abdelbaqi S., 2022. Thermal performance and statistical analysis of a new bio-based insulation material produced using grain puffing technique. Constr. Build. Mater. 345, 128311.
    [42]
    Kolak M.N., Oltulu M., 2023. Investigation of mechanical and thermal properties of new type bio-composites containing camelina. Constr. Build. Mater. 362, 129779.
    [43]
    Korjenic A., Petránek V., Zach J., Hroudová J., 2011. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 43, 2518-2523.
    [44]
    Krishnaprasad R., Veena N.R., Maria H.J., Rajan R., Skrifvars M., Joseph K., 2009. Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites. J. Polym. Environ. 17, 109-114.
    [45]
    Kumar A., Staněk K., Ryparová P., Hajek P., Tywoniak J., 2016. Hydrophobic treatment of wood fibrous thermal insulator by octadecyltrichlorosilane and its influence on hygric properties and resistance against moulds. Compos. B Eng. 106, 285-293.
    [46]
    Lee S.G., Choi S.S., Park W.H., Cho D., 2003. Characterization of surface modified flax fibers and their biocomposites with PHB. Macromol. Symp. 197, 89-100.
    [47]
    Lee S.Y., Kang I.A., Doh G.H., Yoon H.G., Park B.D., Wu Q.L., 2008. Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J. Thermoplast. Compos. Mater. 21, 209-223.
    [48]
    Li D., Lv L., Chen J.C., Chen G.Q., 2017. Controlling microbial PHB synthesis via CRISPRi. Appl. Microbiol. Biotechnol. 101, 5861-5867.
    [49]
    Lu N., Oza S., 2013. Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Compos. B Eng. 44, 484-490.
    [50]
    Marques B., Almeida J., Tadeu A., António J., Santos M.I., de Brito J., Oliveira M., 2021. Rice husk cement-based composites for acoustic barriers and thermal insulating layers. J. Build. Eng. 39, 102297.
    [51]
    McAdam B., Fournet M.B., McDonald P., Mojicevic M., 2020. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 12, 2908.
    [52]
    Mehrez I., Hachem H., Gheith R., Jemni A., 2023. Optimization of mortar/Agave americana fibers composite behavior based on experimental design. J. Nat. Fibres. 20: 2152149.
    [53]
    Melendez-Rodriguez B., Torres-Giner S., Aldureid A., Cabedo L., Lagaron J.M., 2019. Reactive melt mixing of poly(3-hydroxybutyrate)/rice husk flour composites with purified biosustainably produced poly(3-hydroxybutyrate- co-3-hydroxyvalerate). Materials 12, 2152.
    [54]
    Melo J.D.D., Carvalho L.F.M., Medeiros A.M., Souto C.R.O., Paskocimas C.A., 2012. A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Compos. B Eng. 43, 2827-2835.
    [55]
    Mlhem A., Abu-Jdayil B., Iqbal M.Z., 2023. High-performance, renewable thermal insulators based on silylated date palm fiber-reinforced poly(β-hydroxybutyrate) composites. Dev. Built Environ. 16, 100240.
    [56]
    Mlhem A., Abu-Jdayil B., Tong-Earn T., Iqbal M., 2022. Sustainable heat insulation composites from date palm fibre reinforced poly(β-hydroxybutyrate). J. Build. Eng. 54, 104617.
    [57]
    Moura A., Bolba C., Demori R., Lima L.P.F.C., Santana R.M.C., 2018. Effect of rice husk treatment with hot water on mechanical performance in poly(hydroxybutyrate)/rice husk biocomposite. J. Polym. Environ. 26, 2632-2639.
    [58]
    Nabili A., Fattoum A., Passas R., Elaloui E., 2016. Extraction and characterization of cellulose from date palm seeds (Phoenix dactylifera L.). Cellul. Chem. Technol. 50, 1015-1023.
    [59]
    Norvaišienė R., Griciutė G., Bliūdžius R., Ramanauskas J., 2013. The changes of moisture absorption properties during the service life of external thermal insulation composite system. Mater. Sci. 19: 103-107.
    [60]
    Oliver-Ortega H., Julián F., Espinach F.X., Méndez J.A., 2023. Simulated environmental conditioning of PHB composites reinforced with barley fibres to determine the viability of their use as plastics for the agriculture sector. Polymers 15, 579.
    [61]
    Panneerdhass R., Gnanavelbabu A., Rajkumar K., 2014. Mechanical properties of Luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Eng. 97, 2042-2051.
    [62]
    Papadopoulos A.M., 2005. State of the art in thermal insulation materials and aims for future developments. Energy Build. 37, 77-86.
    [63]
    Raza M., Abu-Jdayil B., 2023. Synergic interactions, kinetic and thermodynamic analyses of date palm seeds and cashew shell waste co-pyrolysis using Coats-Redfern method. Case Stud. Therm. Eng. 47, 103118.
    [64]
    Reis K.C., Pereira L., Melo I.C.N.A., Marconcini J.M., Trugilho P.F., Tonoli G.H.D., 2015. Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites. Mater. Res. 18, 546-552.
    [65]
    Rodríguez E., Francucci G., 2016. PHB coating on jute fibers and its effect on natural fiber composites performance. J. Compos. Mater. 50, 2047-2058.
    [66]
    Salim A.M., Abu Dabous S., 2022. SWOT analysis of solar photovoltaic systems in public housing projects in the united Arab emirates. Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET). Dubai, United Arab Emirates. IEEE, 1-6.
    [67]
    Salleh F.M., Hassan A., Yahya R., Lafia-Araga R.A., Azzahari A.D., Nazir M.N.Z.M., 2014. Improvement in the mechanical performance and interfacial behavior of kenaf fiber reinforced high density polyethylene composites by the addition of maleic anhydride grafted high density polyethylene. J. Polym. Res. 21, 439.
    [68]
    Santos E.B.C., Barros J.J.P., de Moura D.A., Moreno C.G., de Carvalho Fim F., da Silva L.B., 2019. Rheological and thermal behavior of PHB/piassava fiber residue-based green composites modified with warm water. J. Mater. Res. Technol. 8, 531-540.
    [69]
    Sheng X.W., Xiao S.M., Zheng W.Q., Sun H.Z., Yang Y., Ma K.L., 2023. Experimental and finite element investigations on hydration heat and early cracks in massive concrete piers. Case Stud. Constr. Mater. 18, e01926.
    [70]
    Singha A.S., Thakur V.K., 2009. Synthesis and characterization of short Saccaharum cilliare fibre reinforced polymer composites. E J. Chem. 6, 34-38.
    [71]
    Sinsukudomchai P., Aht-Ong D., Honda K., Napathorn S.C., 2023. Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. PLoS One 18, e0282311.
    [72]
    Smith M.K.M., Paleri D.M., Abdelwahab M., Mielewski D.F., Misra M., Mohanty A.K., 2020. Sustainable composites from poly(3-hydroxybutyrate) (PHB) bioplastic and agave natural fibre. Green Chem. 22, 3906-3916.
    [73]
    Song W., Yang Z.X., Zhang S.B., Fei B.H., Zhao R.J., 2023. Properties enhancement of poly(β-hydroxybutyrate) biocomposites by incorporating surface-modified wheat straw flour: effect of pretreatment methods. Int. J. Biol. Macromol. 232, 123456.
    [74]
    Stec A.A., Hull T.R., 2011. Assessment of the fire toxicity of building insulation materials. Energy Build. 43, 498-506.
    [75]
    Torres-Giner S., Montanes N., Fombuena V., Boronat T., Sanchez-Nacher L., 2018. Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Adv. Polym. Technol. 37, 1305-1315.
    [76]
    Valente B.F.A., Silvestre A.J.D., Neto C.P., Vilela C., Freire C.S.R., 2021. Effect of the micronization of pulp fibers on the properties of green composites. Molecules 26, 5594.
    [77]
    Ventura H., Claramunt J., Rodríguez-Pérez M.A., Ardanuy M., 2017. Effects of hydrothermal aging on the water uptake and tensile properties of PHB/flax fabric biocomposites. Polym. Degrad. Stab. 142, 129-138.
    [78]
    Vicente D., Proença D.N., Morais P.V., 2023. The role of bacterial polyhydroalkanoate (PHA) in a sustainable future: a review on the biological diversity. Int. J. Environ. Res. Public Health 20, 2959.
    [79]
    Vitorino M.B.C., Cipriano P.B., Wellen R.M.R., Canedo E.L., Carvalho L.H., 2016. Nonisothermal melt crystallization of PHB/babassu compounds. J. Therm. Anal. Calorim. 126, 755-769.
    [80]
    Wang W., Yang R.X., Li T., Komarneni S., Liu B.J., 2021. Advances in recyclable and superior photocatalytic fibers: material, construction, application and future perspective. Compos. B Eng. 205, 108512.
    [81]
    Waters C.L., Janupala R.R., Mallinson R.G., Lobban L.L., 2017. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 126, 380-389.
    [82]
    Wu C.S., 2006. Assessing biodegradability and mechanical, thermal, and morphological properties of an acrylic acid-modified poly(3-hydroxybutyric acid)/wood flours biocomposite. J. Appl. Polym. Sci. 102, 3565-3574.
    [83]
    Ye H.R., Zheng G.Y., Zuo S.D., Yu Q.H., Xia C.L., Sheng Y.Q., Shi Y., Wang D.X., Li J.Z., Ge S.B., 2023. Lightweight, bacteriostatic and thermally conductive wood plastic composite prepared by chitosan modified biointerfaces. Appl. Surf. Sci. 615, 156313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (32) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return