Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Korbinian Sinzinger, Ulrike Obst, Samed Güner, Manuel Döring, Magdalena Haslbeck, Doris Schieder, Volker Sieber. The Pichia pastoris enzyme production platform: From combinatorial library screening to bench-top fermentation on residual cyanobacterial biomass[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 43-57. doi: 10.1016/j.jobab.2023.12.005
Citation: Korbinian Sinzinger, Ulrike Obst, Samed Güner, Manuel Döring, Magdalena Haslbeck, Doris Schieder, Volker Sieber. The Pichia pastoris enzyme production platform: From combinatorial library screening to bench-top fermentation on residual cyanobacterial biomass[J]. Journal of Bioresources and Bioproducts, 2024, 9(1): 43-57. doi: 10.1016/j.jobab.2023.12.005

The Pichia pastoris enzyme production platform: From combinatorial library screening to bench-top fermentation on residual cyanobacterial biomass

doi: 10.1016/j.jobab.2023.12.005
Funds:

The EFRE—Interreg project 41 “Joint Research on Natural Compounds from Cyanobacteria as a Model of Cross-Border Scientific Partnership” was funded by the European Union ZIEL ETZ. Many thanks to Algatech for providing the biomass and to Prof. Timothy K. Lu (MIT) for providing P. pastoris attP.

  • Available Online: 2024-01-31
  • Publish Date: 2023-12-26
  • The demand for industrial enzymes is continually rising, fueled by the growing need to shift towards more sustainable industrial processes. However, making efficient enzyme production strains and identifying optimal enzyme expression conditions remains a challenge. Moreover, the production of the enzymes themselves comes with unavoidable impacts, e.g., the need to utilize secondary feedstocks. Here, we take a more holistic view of bioprocess development and report an integrative approach that allows us to rapidly identify improved enzyme expression and secretion conditions and make use of cyanobacterial waste biomass as feed for supporting Pichia pastoris fermentation. We demonstrate these capabilities by producing a phytase secreted by P. pastoris that is grown on cyanobacterium hydrolysate and buffered glycerol-complex (BMGY) medium, with genetic expression conditions identified by high-throughput screening of a randomized secretion library. When our best-performing strain is grown in a fed-batch fermentation on BMGY, we reach over 7 000 U/mL in three days.

     

  • loading
  • [1]
    Akbarzadeh, A., Dehnavi, E., Aghaeepoor, M., Amani, J., 2015. Optimization of recombinant expression of synthetic bacterial phytase in Pichia pastoris using response surface methodology. Jundishapur J. Microbiol. 8, e27553.
    [2]
    Bae, H.D., Yanke, L.J., Cheng, K.J., Selinger, L.B., 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39, 17-22.
    [3]
    Bai, Y.G., Yang, P.L., Wang, Y.R., Shi, P.J., Luo, H.Y., Meng, K., Wu, B., Yao, B., 2009. Phytase production by fermentation of recombinant Pichia pastoris in monosodium glutamate wastewater. World J. Microbiol. Biotechnol. 25, 1643-1649.
    [4]
    Briones-Nagata, M.P., Martinez-Goss, M.R., Hori, K., 2007. A comparison of the morpho-cytology and chemical composition of the two forms of the cyanobacterium, Nostoc commune Vauch., from the Philippines and Japan. J. Appl. Phycol. 19, 675-683.
    [5]
    Canton, B., Labno, A., Endy, D., 2008. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787-793.
    [6]
    Celińska, E., Borkowska, M., Białas, W., Korpys, P., Nicaud, J.M., 2018. Robust signal peptides for protein secretion in Yarrowia lipolytica: identification and characterization of novel secretory tags. Appl. Microbiol. Biotechnol. 102, 5221-5233.
    [7]
    Chandra, R., Iqbal, H.M.N., Vishal, G., Lee, H.S., Nagra, S., 2019. Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol. 278, 346-359.
    [8]
    Chen, C.C., Cheng, K.J., Ko, T.P., Guo, R.T., 2015. Current progresses in phytase research: three-dimensional structure and protein engineering. ChemBioEng Rev. 2, 76-86.
    [9]
    Chen, C.C., Wu, P.H., Huang, C.T., Cheng, K.J., 2004. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb. Technol. 35, 315-320.
    [10]
    Choi, S.P., Nguyen, M.T., Sim, S.J., 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101, 5330-5336.
    [11]
    Curran, K.A., Karim, A.S., Gupta, A., Alper, H.S., 2013. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab. Eng. 19, 88-97.
    [12]
    David G., 2018. Chapter 26—economics of food and feed enzymes: status and prospectives. In: Carlos S. N., Vikas K. (Eds.). Enzymes in Human and Animal Nutrition. USA: Academic Press, 487-514.
    [13]
    de Farias Silva, C.E., Barbera, E., Bertucco, A., 2019. Biorefinery as a promising approach to promote ethanol industry from microalgae and Cyanobacteria. Bioethanol Production from Food Crops. Amsterdam: Elsevier, 343-359.
    [14]
    Delic, M., Valli, M., Graf, A.B., Pfeffer, M., Mattanovich, D., Gasser, B., 2013. The secretory pathway: exploring yeast diversity. FEMS Microbiol. Rev. 37, 872-914.
    [15]
    Engler, C., Gruetzner, R., Kandzia, R., Marillonnet, S., 2009. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553.
    [16]
    Fasahati, P., Wu, W.Z., Maravelias, C.T., 2019. Process synthesis and economic analysis of cyanobacteria biorefineries: a superstructure-based approach. Appl. Energy 253, 113625.
    [17]
    Han, Y.M., Lei, X.G., 1999. Role of glycosylation in the functional expression of anAspergillus nigerPhytase (phyA) inPichia pastoris. Arch. Biochem. Biophys. 364, 83-90.
    [18]
    Helian, Y.K., Gai, Y.M., Fang, H., Sun, Y.M., Zhang, D.W., 2020. A multistrategy approach for improving the expression of E. coli phytase in Pichia pastoris. J. Ind. Microbiol. Biotechnol. 47, 1161-1172.
    [19]
    Herrmann, K.R., Ruff, A.J., Infanzón, B., Schwaneberg, U., 2019. Engineered phytases for emerging biotechnological applications beyond animal feeding. Appl. Microbiol. Biotechnol. 103, 6435-6448.
    [20]
    Hesampour, A., Siadat, S.E.R., Malboobi, M.A., Mohandesi, N., Arab, S.S., Ghahremanpour, M.M., 2015. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis. Appl. Biochem. Biotechnol. 175, 2528-2541.
    [21]
    Karbalaei, M., Rezaee, S.A., Farsiani, H., 2020. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 235, 5867-5881.
    [22]
    Lee, M.E., DeLoache, W.C., Cervantes, B., Dueber, J.E., 2015. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975-986.
    [23]
    Liang, S.L., Li, C., Ye, Y.R., Lin, Y., 2013. Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol. Lett. 35, 97-105.
    [24]
    Liu, W.C., Inwood, S., Gong, T., Sharma, A., Yu, L.Y., Zhu, P., 2019. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit. Rev. Biotechnol. 39, 258-271.
    [25]
    Looser, V., Bruhlmann, B., Bumbak, F., Stenger, C., Costa, M., Camattari, A., Fotiadis, D., Kovar, K., 2015. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol. Adv. 33, 1177-1193.
    [26]
    Madden, K., Tolstorukov, I., Cregg, J., 2015. Electroporation of Pichia pastoris. Genetic Transformation Systems in Fungi, Volume 1. Cham: Springer, 2015: 87-91.
    [27]
    Massahi, A., Çalık, P., 2015. In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J. Theor. Biol. 364, 179-188.
    [28]
    Mitra, M., Mishra, S., 2019. Multiproduct biorefinery from Arthrospira spp. towards zero waste: current status and future trends. Bioresour. Technol. 291, 121928.
    [29]
    Möllers, K.B., Cannella, D., Jørgensen, H., Frigaard, N.U., 2014. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 7, 64.
    [30]
    Morse, N.J., Gopal, M.R., Wagner, J.M., Alper, H.S., 2017. Yeast Terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth. Biol. 6, 2086-2095.
    [31]
    Navone, L., Vogl, T., Luangthongkam, P., Blinco, J.A., Luna-Flores, C., Chen, X.J., von Hellens, J., Speight, R., 2021. Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Microb. Cell Fact. 20, 8.
    [32]
    Obst, U., Lu, T.K., Sieber, V., 2017. A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synth. Biol. 6, 1016-1025.
    [33]
    Perez-Pinera, P., Han, N.R., Cleto, S., Cao, J.C., Purcell, O., Shah, K.A., Lee, K., Ram, R., Lu, T.K., 2016. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nat. Commun. 7, 12211.
    [34]
    Prielhofer, R., Barrero, J.J., Steuer, S., Gassler, T., Zahrl, R., Baumann, K., Sauer, M., Mattanovich, D., Gasser, B., Marx, H., 2017. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst. Biol. 11, 123.
    [35]
    Prielhofer, R., Maurer, M., Klein, J., Wenger, J., Kiziak, C., Gasser, B., Mattanovich, D., 2013. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb. Cell Fact. 12, 5.
    [36]
    Qin, X., Qian, J., Xiao, C., Zhuang, Y., Zhang, S., Chu, J., 2011. Reliable high-throughput approach for screening of engineered constitutive promoters in the yeast Pichia pastoris. Lett. Appl. Microbiol. 52, 634-641.
    [37]
    Rajkumar, A.S., Varela, J.A., Juergens, H., Daran, J.MG., Morrissey, J.P., 2019. Biological parts for Kluyveromyces marxianus synthetic biology. Front. Bioeng. Biotechnol. 7, 97.
    [38]
    Ranjan, B., Satyanarayana, T., 2016. Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile: expression of the Codon-optimized phytase gene in Pichia pastoris and applications. Mol. Biotechnol. 58, 137-147.
    [39]
    Shen, W., Xue, Y., Liu, Y.Q., Kong, C.X., Wang, X.L., Huang, M.M., Cai, M.H., Zhou, X.S., Zhang, Y.X., Zhou, M., 2016. A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb. Cell Fact. 15, 178.
    [40]
    Sinzinger, K., Schieder, D., Rühmann, B., Sieber, V., 2022. Towards a cyanobacterial biorefinery: carbohydrate fingerprint, biocomposition and enzymatic hydrolysis of Nostoc biomass. Algal Res. 65, 102744.
    [41]
    Stadlmayr, G., Mecklenbräuker, A., Rothmüller, M., Maurer, M., Sauer, M., Mattanovich, D., Gasser, B., 2010. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J. Biotechnol. 150, 519-529.
    [42]
    Tai, H.M., Yin, L.J., Chen, W.C., Jiang, S.T., 2013. Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties. J. Agric. Food Chem. 61, 6007-6015.
    [43]
    Vogl, T., Sturmberger, L., Kickenweiz, T., Wasmayer, R., Schmid, C., Hatzl, A.M., Gerstmann, M.A., Pitzer, J., Wagner, M., Thallinger, G.G., Geier, M., Glieder, A., 2016. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth. Biol. 5, 172-186.
    [44]
    Weis, R., Luiten, R., Skranc, W., Schwab, H., Wubbolts, M., Glieder, A., 2004. Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res. 5, 179-189.
    [45]
    Xiong, A.S., Yao, Q.H., Peng, R.H., Han, P.L., Cheng, Z.M., Li, Y., 2005. High level expression of a recombinant acid phytase gene in Pichia pastoris. J. Appl. Microbiol. 98, 418-428.
    [46]
    Yarimizu, T., Nakamura, M., Hoshida, H., Akada, R., 2015. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb. Cell Fact. 14, 20.
    [47]
    Zang, J.K., Zhu, Y.F., Zhou, Y., Gu, C.J., Yi, Y.F., Wang, S.X., Xu, S.Q., Hu, G.W., Du, S.J., Yin, Y.N., Wang, Y.L., Yang, Y., Zhang, X.Y., Wang, H.K., Yin, F.F., Zhang, C., Deng, Q., Xie, Y.H., Huang, Z., 2021. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov. 7, 71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (49) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return