Volume 9 Issue 3
Jul.  2024
Turn off MathJax
Article Contents
Sreesha Malayil, Luke Loughran, Frederik Mendoza Ulken, Jagannadh Satyavolu. Exploring hemp seed hull biomass for an integrated C-5 biorefinery: Xylose and activated carbon[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 310-321. doi: 10.1016/j.jobab.2024.01.002
Citation: Sreesha Malayil, Luke Loughran, Frederik Mendoza Ulken, Jagannadh Satyavolu. Exploring hemp seed hull biomass for an integrated C-5 biorefinery: Xylose and activated carbon[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 310-321. doi: 10.1016/j.jobab.2024.01.002

Exploring hemp seed hull biomass for an integrated C-5 biorefinery: Xylose and activated carbon

doi: 10.1016/j.jobab.2024.01.002
  • Publish Date: 2024-07-05
  • Large quantities of hemp hulls can be completely utilized for creation of value-added products (cost effective biofuels and biochemicals) through a biorefinery approach. A sustainable approach in making xylose, a low calorie sweetener and high surface area activated carbons (AC) for super capacitors, attracts interest. The AC when leveraged as a co-product from biorefinery process makes it more cost effective and, in this paper, we discuss the production of xylose and AC from hemp seed hull with methane sulphonic acid (MSA) hydrolysis. Xylose recovery with MSA hydrolysis was 25.15 g/L when compared to the traditional sulphuric acid (SA) hydrolysis of 19.96 g/L at the same acid loading of 1.8 %. The scanning electron microscope (SEM) images and Fourier transform infrared (FT-IR) spectra indicate partial delignification along with hemicellulose hydrolysis responsible for high xylose recovery. Post hydrolysis fibers were KOH activated and carbonized to make AC. The MSA hydrolyzed and KOH activated fiber produced pure, fluffier and finer particle AC with a drastic increase in surface area 1 452 m2/g when compared to SA hydrolyzed of 977 m2/g. These results indicate the potential of MSA in dilute acid hydrolysis of biomass for xylose recovery and production of high surface area activated carbon. From a production standpoint this can lead to increased use of sustainable low-cost agricultural biomass for making high surface area AC as components in supercapacitors.

     

  • loading
  • [1]
    Adesina, I., Bhowmik, A., Sharma, H., Shahbazi, A., 2020. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 10, 129.
    [2]
    Adhikary, D., Kulkarni, M., El-Mezawy, A., Mobini, S., Elhiti, M., Gjuric, R., Ray, A., Polowick, P., Slaski, J.J., Jones, M.P., Bhowmik, P., 2021. Medical Cannabis and industrial hemp tissue culture: present status and future potential. Front. Plant Sci. 12, 627240.
    [3]
    Almashhadani, A.Q., Leh, C.P., Chan, S.Y., Lee, C.Y., Goh, C.F., 2022. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: importance of hydrolysis parameters. Carbohydr. Polym. 286, 119285.
    [4]
    Aloo, S.O., Mwiti, G., Ngugi, L.W., Oh, D.H., 2022. Uncovering the secrets of industrial hemp in food and nutrition: the trends, challenges, and new-age perspectives. Crit. Rev. Food Sci. Nutr., 1-20.
    [5]
    Baig, M.M., Gul, I.H., 2021. Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors. Biomass Bioenergy 144, 105909.
    [6]
    Balla, V.K., Tadimeti, J.G.D., Sudan, K., Satyavolu, J., Kate, K.H., 2021. First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Prog. Addit. Manuf. 6, 39-52.
    [7]
    Basar, I.A., Liu, H., Carrere, H., Trably, E., Eskicioglu, C., 2021. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chem. 23, 1404-1446.
    [8]
    Burton, R.A., Andres, M., Cole, M., Cowley, J.M., Augustin, M.A., 2022. Industrial hemp seed: from the field to value-added food ingredients. J. Cannabis Res. 4, 45.
    [9]
    Cassales, A., de Souza-Cruz, P.B., Rech, R., Záchia Ayub, M.A., 2011. Optimization of soybean hull acid hydrolysis and its characterization as a potential substrate for bioprocessing. Biomass Bioenergy 35, 4675-4683.
    [10]
    Chanakya, H.N., Sreesha, M., 2012. Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost Energy Sustain. Dev. 16, 231-235.
    [11]
    Chandel, A.K., Antunes, F.A.F., de Arruda, P.V., Milessi, T.S.S., da Silva, S.S., das Graças de Almeida Felipe, M., 2012. Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. D-Xylitol. Berlin, Heidelberg: Springer, 39-61.
    [12]
    Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370-381.
    [13]
    Chen, W., Gong, M., Li, K.X., Xia, M.W., Chen, Z.Q., Xiao, H.Y., Fang, Y., Chen, Y.Q., Yang, H.P., Chen, H.P., 2020. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl. Energy 278, 115730.
    [14]
    Cherubini, F., Strømman, A.H., 2011. Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod. Biorefin. 5, 548-561.
    [15]
    Danish, M., Ahmad, T., 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 87, 1-21.
    [16]
    Faix, O., 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45, 21-28.
    [17]
    Fonseca, D.A., Lupitskyy, R., Timmons, D., Gupta, M., Satyavolu, J., 2014. Towards integrated biorefinery from dried distillers grains: selective extraction of pentoses using dilute acid hydrolysis. Biomass Bioenergy 71, 178-186.
    [18]
    Gierer, J., 1985. Chemistry of delignification. Wood Sci. Technol. 19, 289-312.
    [19]
    Goh, C.S., Tan, H.T., Lee, K.T., Brosse, N., 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass Bioenergy 35, 4025-4033.
    [20]
    Gori, S.S., Raju, M.V.R., Fonseca, D.A., Satyavolu, J., Burns, C.T., Nantz, M.H., 2015. Isolation of C5-sugars from the hemicellulose-rich hydrolyzate of distillers dried grains. ACS Sustain. Chem. Eng. 3, 2452-2457.
    [21]
    Herde, Z.D., Dharmasena, R., Draper, G.L., Sumanasekera, G., Satyavolu, J., 2018. Production of high surface area activated carbons for energy storage applications using agricultural biomass residue from a C5-biorefinery. AIP Conf. Proc. 1992, 020004.
    [22]
    Herde, Z.D., Dharmasena, R., Sumanasekera, G., Tumuluru, J.S., Satyavolu, J., 2020. Impact of hydrolysis on surface area and energy storage applications of activated carbons produced from corn fiber and soy hulls. Carbon Resour. Convers. 3, 19-28.
    [23]
    Kiyoto, S., Yoshinaga, A., Fernandez-Tendero, E., Day, A., Chabbert, B., Takabe, K., 2018. Distribution of lignin, hemicellulose, and Arabinogalactan protein in hemp phloem fibers. Microsc. Microanal. 24, 442-452.
    [24]
    Kresnowati, M.P., Januardi, D.C., Utomo, S.V., 2021. Estimation of xylose recovery from lignocellulosic biomass. IOP Conf. Ser. 1143, 012022.
    [25]
    Leonard, W., Zhang, P.Z., Ying, D.Y., Nie, S., Liu, S.Y., Fang, Z.X., 2022. Post-extrusion physical properties, techno-functionality and microbiota-modulating potential of hempseed (Cannabis sativa L.) hull fiber. Food Hydrocoll. 131, 107836.
    [26]
    Lobato-Peralta, D.R., Duque-Brito, E., Villafán-Vidales, H.I., Longoria, A., Sebastian, P.J., Cuentas-Gallegos, A.K., Arancibia-Bulnes, C.A., Okoye, P.U., 2021. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 293, 126123.
    [27]
    Malayil, S., Surendran, A.N., Kate, K., Satyavolu, J., 2022. Impact of acid hydrolysis on composition, morphology and xylose recovery from almond biomass (skin and shell). Bioresour. Technol. Rep. 19, 101150.
    [28]
    Malomo, S.A., He, R., Aluko, R.E., 2014. Structural and functional properties of hemp seed protein products. J. Food Sci. 79, C1512-C1521.
    [29]
    Mishra, P., Kumar, P., Tripathi, Y.B., Garg, N., 2022. Demand and supply gaps: seeds and raw material. In: Belwal, T., Belwal, N.C. (Eds.). Revolutionizing the Potential of Hemp and Its Products in Changing the Global Economy. Berlin, Heidelberg: Springer, 169-179.
    [30]
    Negahdar, L., Delidovich, I., Palkovits, R., 2016. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Appl. Catal. B 184, 285-298.
    [31]
    Pappas, I.A., Koukoura, Z., Tananaki, C., Goulas, C., 2014. Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars. Bioresour. Technol. 166, 395-402.
    [32]
    Poniatowska, J., Wielgus, K., Szalata, M., Szalata, M., Ożarowski, M., Panasiewicz, K., 2019. Contribution of Polish agrotechnical studies on Cannabis sativa L. to the global industrial hemp cultivation and processing economy. Herba Pol. 65, 37-50.
    [33]
    Ranalli, P., Venturi, G., 2004. Hemp as a raw material for industrial applications. Euphytica 140, 1-6.
    [34]
    Rheay, H.T., Omondi, E.C., Brewer, C.E., 2021. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 13, 525-536.
    [35]
    Satyavolu, J., Tadimeti, J.G.D., Thilakaratne, R., 2021. Xylose production and the associated integration for biocoal production. Energy Convers. Manag. X 10, 100073.
    [36]
    Saura-Calixto, F., Cañellas, J., Garcia-Raso, J., 1983. Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. Data comparison. Untersuchung Und Forsch. 177, 200-202.
    [37]
    Tadimeti, J.G.D., Thilakaratne, R., Balla, V.K., Kate, K.H., Satyavolu, J., 2022. A two-stage C5 selective hydrolysis on soybean hulls for xylose separation and value-added cellulose applications. Biomass Convers. Biorefin. 12, 3289-3301.
    [38]
    Wu, R.J., Li, Y.Z., Wang, X.D., Fu, Y.J., Qin, M.H., Zhang, Y.C., 2023. In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment. Bioresour. Technol. 369, 128410.
    [39]
    Xiao, Y., Chen, H.B., Zheng, M.T., Dong, H.W., Lei, B.F., Liu, Y.L., 2014. Porous carbon with ultrahigh specific surface area derived from biomass rice hull. Mater. Lett. 116, 185-187.
    [40]
    Yang, C.S., Jang, Y.S., Jeong, H.K., 2014. Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys. 14, 1616-1620.
    [41]
    Yang, X., Wang, H.L., Strong, P., Xu, S., Liu, S.J., Lu, K.P., Sheng, K.C., Guo, J., Che, L., He, L.Z., Ok, Y., Yuan, G.D., Shen, Y., Chen, X., 2017. Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10, 469.
    [42]
    Yousuf, A., Pirozzi, D., Sannino, F., 2020. Fundamentals of Lignocellulosic Biomass. Lignocellulosic Biomass to Liquid Biofuels. Amsterdam: Elsevier, 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (188) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return