Citation: | Sreesha Malayil, Luke Loughran, Frederik Mendoza Ulken, Jagannadh Satyavolu. Exploring hemp seed hull biomass for an integrated C-5 biorefinery: Xylose and activated carbon[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 310-321. doi: 10.1016/j.jobab.2024.01.002 |
[1] |
Adesina, I., Bhowmik, A., Sharma, H., Shahbazi, A., 2020. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 10, 129.
|
[2] |
Adhikary, D., Kulkarni, M., El-Mezawy, A., Mobini, S., Elhiti, M., Gjuric, R., Ray, A., Polowick, P., Slaski, J.J., Jones, M.P., Bhowmik, P., 2021. Medical Cannabis and industrial hemp tissue culture: present status and future potential. Front. Plant Sci. 12, 627240.
|
[3] |
Almashhadani, A.Q., Leh, C.P., Chan, S.Y., Lee, C.Y., Goh, C.F., 2022. Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: importance of hydrolysis parameters. Carbohydr. Polym. 286, 119285.
|
[4] |
Aloo, S.O., Mwiti, G., Ngugi, L.W., Oh, D.H., 2022. Uncovering the secrets of industrial hemp in food and nutrition: the trends, challenges, and new-age perspectives. Crit. Rev. Food Sci. Nutr., 1-20.
|
[5] |
Baig, M.M., Gul, I.H., 2021. Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors. Biomass Bioenergy 144, 105909.
|
[6] |
Balla, V.K., Tadimeti, J.G.D., Sudan, K., Satyavolu, J., Kate, K.H., 2021. First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Prog. Addit. Manuf. 6, 39-52.
|
[7] |
Basar, I.A., Liu, H., Carrere, H., Trably, E., Eskicioglu, C., 2021. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chem. 23, 1404-1446.
|
[8] |
Burton, R.A., Andres, M., Cole, M., Cowley, J.M., Augustin, M.A., 2022. Industrial hemp seed: from the field to value-added food ingredients. J. Cannabis Res. 4, 45.
|
[9] |
Cassales, A., de Souza-Cruz, P.B., Rech, R., Záchia Ayub, M.A., 2011. Optimization of soybean hull acid hydrolysis and its characterization as a potential substrate for bioprocessing. Biomass Bioenergy 35, 4675-4683.
|
[10] |
Chanakya, H.N., Sreesha, M., 2012. Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost Energy Sustain. Dev. 16, 231-235.
|
[11] |
Chandel, A.K., Antunes, F.A.F., de Arruda, P.V., Milessi, T.S.S., da Silva, S.S., das Graças de Almeida Felipe, M., 2012. Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. D-Xylitol. Berlin, Heidelberg: Springer, 39-61.
|
[12] |
Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370-381.
|
[13] |
Chen, W., Gong, M., Li, K.X., Xia, M.W., Chen, Z.Q., Xiao, H.Y., Fang, Y., Chen, Y.Q., Yang, H.P., Chen, H.P., 2020. Insight into KOH activation mechanism during biomass pyrolysis: chemical reactions between O-containing groups and KOH. Appl. Energy 278, 115730.
|
[14] |
Cherubini, F., Strømman, A.H., 2011. Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod. Biorefin. 5, 548-561.
|
[15] |
Danish, M., Ahmad, T., 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 87, 1-21.
|
[16] |
Faix, O., 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45, 21-28.
|
[17] |
Fonseca, D.A., Lupitskyy, R., Timmons, D., Gupta, M., Satyavolu, J., 2014. Towards integrated biorefinery from dried distillers grains: selective extraction of pentoses using dilute acid hydrolysis. Biomass Bioenergy 71, 178-186.
|
[18] |
Gierer, J., 1985. Chemistry of delignification. Wood Sci. Technol. 19, 289-312.
|
[19] |
Goh, C.S., Tan, H.T., Lee, K.T., Brosse, N., 2011. Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass Bioenergy 35, 4025-4033.
|
[20] |
Gori, S.S., Raju, M.V.R., Fonseca, D.A., Satyavolu, J., Burns, C.T., Nantz, M.H., 2015. Isolation of C5-sugars from the hemicellulose-rich hydrolyzate of distillers dried grains. ACS Sustain. Chem. Eng. 3, 2452-2457.
|
[21] |
Herde, Z.D., Dharmasena, R., Draper, G.L., Sumanasekera, G., Satyavolu, J., 2018. Production of high surface area activated carbons for energy storage applications using agricultural biomass residue from a C5-biorefinery. AIP Conf. Proc. 1992, 020004.
|
[22] |
Herde, Z.D., Dharmasena, R., Sumanasekera, G., Tumuluru, J.S., Satyavolu, J., 2020. Impact of hydrolysis on surface area and energy storage applications of activated carbons produced from corn fiber and soy hulls. Carbon Resour. Convers. 3, 19-28.
|
[23] |
Kiyoto, S., Yoshinaga, A., Fernandez-Tendero, E., Day, A., Chabbert, B., Takabe, K., 2018. Distribution of lignin, hemicellulose, and Arabinogalactan protein in hemp phloem fibers. Microsc. Microanal. 24, 442-452.
|
[24] |
Kresnowati, M.P., Januardi, D.C., Utomo, S.V., 2021. Estimation of xylose recovery from lignocellulosic biomass. IOP Conf. Ser. 1143, 012022.
|
[25] |
Leonard, W., Zhang, P.Z., Ying, D.Y., Nie, S., Liu, S.Y., Fang, Z.X., 2022. Post-extrusion physical properties, techno-functionality and microbiota-modulating potential of hempseed (Cannabis sativa L.) hull fiber. Food Hydrocoll. 131, 107836.
|
[26] |
Lobato-Peralta, D.R., Duque-Brito, E., Villafán-Vidales, H.I., Longoria, A., Sebastian, P.J., Cuentas-Gallegos, A.K., Arancibia-Bulnes, C.A., Okoye, P.U., 2021. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. J. Clean. Prod. 293, 126123.
|
[27] |
Malayil, S., Surendran, A.N., Kate, K., Satyavolu, J., 2022. Impact of acid hydrolysis on composition, morphology and xylose recovery from almond biomass (skin and shell). Bioresour. Technol. Rep. 19, 101150.
|
[28] |
Malomo, S.A., He, R., Aluko, R.E., 2014. Structural and functional properties of hemp seed protein products. J. Food Sci. 79, C1512-C1521.
|
[29] |
Mishra, P., Kumar, P., Tripathi, Y.B., Garg, N., 2022. Demand and supply gaps: seeds and raw material. In: Belwal, T., Belwal, N.C. (Eds.). Revolutionizing the Potential of Hemp and Its Products in Changing the Global Economy. Berlin, Heidelberg: Springer, 169-179.
|
[30] |
Negahdar, L., Delidovich, I., Palkovits, R., 2016. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: insights into the kinetics and reaction mechanism. Appl. Catal. B 184, 285-298.
|
[31] |
Pappas, I.A., Koukoura, Z., Tananaki, C., Goulas, C., 2014. Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars. Bioresour. Technol. 166, 395-402.
|
[32] |
Poniatowska, J., Wielgus, K., Szalata, M., Szalata, M., Ożarowski, M., Panasiewicz, K., 2019. Contribution of Polish agrotechnical studies on Cannabis sativa L. to the global industrial hemp cultivation and processing economy. Herba Pol. 65, 37-50.
|
[33] |
Ranalli, P., Venturi, G., 2004. Hemp as a raw material for industrial applications. Euphytica 140, 1-6.
|
[34] |
Rheay, H.T., Omondi, E.C., Brewer, C.E., 2021. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 13, 525-536.
|
[35] |
Satyavolu, J., Tadimeti, J.G.D., Thilakaratne, R., 2021. Xylose production and the associated integration for biocoal production. Energy Convers. Manag. X 10, 100073.
|
[36] |
Saura-Calixto, F., Cañellas, J., Garcia-Raso, J., 1983. Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. Data comparison. Untersuchung Und Forsch. 177, 200-202.
|
[37] |
Tadimeti, J.G.D., Thilakaratne, R., Balla, V.K., Kate, K.H., Satyavolu, J., 2022. A two-stage C5 selective hydrolysis on soybean hulls for xylose separation and value-added cellulose applications. Biomass Convers. Biorefin. 12, 3289-3301.
|
[38] |
Wu, R.J., Li, Y.Z., Wang, X.D., Fu, Y.J., Qin, M.H., Zhang, Y.C., 2023. In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment. Bioresour. Technol. 369, 128410.
|
[39] |
Xiao, Y., Chen, H.B., Zheng, M.T., Dong, H.W., Lei, B.F., Liu, Y.L., 2014. Porous carbon with ultrahigh specific surface area derived from biomass rice hull. Mater. Lett. 116, 185-187.
|
[40] |
Yang, C.S., Jang, Y.S., Jeong, H.K., 2014. Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys. 14, 1616-1620.
|
[41] |
Yang, X., Wang, H.L., Strong, P., Xu, S., Liu, S.J., Lu, K.P., Sheng, K.C., Guo, J., Che, L., He, L.Z., Ok, Y., Yuan, G.D., Shen, Y., Chen, X., 2017. Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10, 469.
|
[42] |
Yousuf, A., Pirozzi, D., Sannino, F., 2020. Fundamentals of Lignocellulosic Biomass. Lignocellulosic Biomass to Liquid Biofuels. Amsterdam: Elsevier, 1-15.
|