Citation: | Yunyi Liang, Yonghong Luo, Yingji Wu, Xiaona Li, Quyet Van Le, Jianzhang Li, Changlei Xia. Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 222-232. doi: 10.1016/j.jobab.2024.01.003 |
Aadil, K.R., Jha, H., 2016. Physico-chemical properties of lignin–alginate based films in the presence of different plasticizers. Iran. Polym. J. 25, 661–670. doi: 10.1007/s13726-016-0449-1
|
Aristri, M.A., Lubis, M.A.R., Yadav, S.M., Antov, P., Papadopoulos, A.N., Pizzi, A., Fatriasari, W., Ismayati, M., Iswanto, A.H., 2021. Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives: a review. Appl. Sci. 11, 4242. doi: 10.3390/app11094242
|
Baroncini, E.A., Kumar Yadav, S., Palmese, G.R., Stanzione, J.F. Ⅲ, 2016. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J. Appl. Polym. Sci. 133, 44103. doi: 10.1002/app.44103
|
Barth, A., 2000. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 74, 141–173. doi: 10.1016/S0079-6107(00)00021-3
|
Blake, L.I., Cann, M.J., 2022. Carbon dioxide and the carbamate post-translational modification. Front. Mol. Biosci. 9, 825706. doi: 10.3389/fmolb.2022.825706
|
Cividanes, L.S., Simonetti, E.A.N., Moraes, M.B., Fernandes, F.W., Thim, G.P., 2014. Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: a comprehensive review. Polym. Eng. Sci. 54, 2461–2469. doi: 10.1002/pen.23775
|
Elizondo, N.J., Sobral, P.J.A., Menegalli, F.C., 2009. Development of films based on blends of Amaranthus cruentus flour and poly(vinyl alcohol). Carbohydr. Polym. 75, 592–598. doi: 10.1016/j.carbpol.2008.08.020
|
Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.P., Boutevin, B., 2016. Biobased amines: from synthesis to polymers; present and future. Chem. Rev. 116, 14181–14224. doi: 10.1021/acs.chemrev.6b00486
|
Gaifutdinov, A.M., Andrianova, K.A., Amirova, L.M., Milyukov, V.A., Zagidullin, A.A., Amirov, R.R., 2022. Promising low-viscosity phosphorus-containing epoxy compounds: features of interaction with aromatic amines. Res. Eng. 14, 100421.
|
Gao, T.Y., Wang, F.D., Xu, Y., Wei, C.X., Zhu, S.E., Yang, W., Lu, H.D., 2022. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem. Eng. J. 428, 131173. doi: 10.1016/j.cej.2021.131173
|
Gu, W.D., Liu, X.R., Ye, Q.Q., Gao, Q., Gong, S.S., Li, J.Z., Shi, S.Q., 2020. Bio-inspired co-deposition strategy of aramid fibers to improve performance of soy protein isolate-based adhesive. Ind. Crops Prod. 150, 112424. doi: 10.1016/j.indcrop.2020.112424
|
Humphrey, J.M., Chamberlin, A.R., 1997. Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243–2266. doi: 10.1021/cr950005s
|
Ifuku, S., Nogi, M., Yoshioka, M., Morimoto, M., Yano, H., Saimoto, H., 2010. Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydr. Polym. 81, 134–139. doi: 10.1016/j.carbpol.2010.02.006
|
Jiang, T.W., Reddy, K.S.K., Chen, Y.C., Wang, M.W., Chang, H.C., Abu-Omar, M.M., Lin, C.H., 2022. Recycling waste polycarbonate to bisphenol A-based oligoesters as epoxy-curing agents, and degrading epoxy thermosets and carbon fiber composites into useful chemicals. ACS Sustainable Chem. Eng. 10, 2429–2440. doi: 10.1021/acssuschemeng.1c07247
|
Jin, P.K., Song, J.N., Wang, X.C., Jin, X., 2018. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. J. Environ. Sci. (China) 64, 181–189. doi: 10.1016/j.jes.2017.06.018
|
Kang, H.J., Wang, Z., Wang, Y.Y., Zhao, S.J., Zhang, S.F., Li, J.Z., 2019. Development of mainly plant protein-derived plywood bioadhesives via soy protein isolate fiber self-reinforced soybean meal composites. Ind. Crops Prod. 133, 10–17. doi: 10.1016/j.indcrop.2019.03.022
|
Lee, C.H., Wang, Y.Z., 2008. Synthesis and characterization of epoxy-based semi-interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications. J. Polym. Sci. A Polym. Chem. 46, 2262–2276. doi: 10.1002/pola.22561
|
Li, Y., Xiao, F., Moon, K.S., Wong, C.P., 2006. Novel curing agent for lead-free electronics: Amino acid. J. Polym. Sci. A Polym. Chem. 44, 1020–1027. doi: 10.1002/pola.21239
|
Li, Y., Xiao, F., Wong, C.P., 2007. Novel, environmentally friendly crosslinking system of an epoxy using an amino acid: Tryptophan-cured diglycidyl ether of bisphenol A epoxy. J. Polym. Sci. A Polym. Chem. 45, 181–190. doi: 10.1002/pola.21742
|
Liang, Y.Y., Luo, Y.H., Wang, Y., Fei, T.Y., Dai, L.L., Zhang, D.H., Ma, H.Z., Cai, L.P., Xia, C.L., 2023. Effects of lysine on the interfacial bonding of epoxy resin cross-linked soy-based wood adhesive. Molecules 28, 1391. doi: 10.3390/molecules28031391
|
Luo, Y.H., Wang, Y., Xia, C.L., Ahmad, A., Yang, R., Li, X.N., Shi, S.Q., Li, J.Z., Guo, M., Nadda, A.K., Ahamad, T., Van Le, Q., 2022. Eco-friendly soy protein isolate-based films strengthened by water-soluble glycerin epoxy resin. Prog. Org. Coat. 162, 106566. doi: 10.1016/j.porgcoat.2021.106566
|
Milewski, A., Dydo, P., Jakóbik-Kolon, A., Czechowicz, D., Babilas, D., Burek, M., Waśkiewicz, S., Byczek-Wyrostek, A., Krawczyk, T., Kasprzycka, A., 2018. Preparation of triglycerol from glycerol and epichlorohydrin at room temperature: synthesis optimization and toxicity studies. ACS Sustain. Chem. Eng. 6, 13208–13216. doi: 10.1021/acssuschemeng.8b02817
|
Pawlukojć, A., Leciejewicz, J., Ramirez-Cuesta, A.J., Nowicka-Scheibe, J., 2005. L-Cysteine: neutron spectroscopy, Raman, IR and ab initio study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 61, 2474–2481. doi: 10.1016/j.saa.2004.09.012
|
Rashid, M.A., Liu, W.S., Wei, Y., Jiang, Q.R., 2022. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. Polym. Plast. Technol. Mater. 61, 1740–1782. doi: 10.1080/25740881.2022.2080559
|
Reinhardt, N., Breitsameter, J.M., Drechsler, K., Rieger, B., 2022. Fully bio-based epoxy thermoset based on epoxidized linseed oil and tannic acid. Macromol. Mater. Eng. 307, 2200455. doi: 10.1002/mame.202200455
|
Shibata, M., Fujigasaki, J., Enjoji, M., Shibita, A., Teramoto, N., Ifuku, S., 2018. Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. Eur. Polym. J. 98, 216–225. doi: 10.1016/j.eurpolymj.2017.11.024
|
Stagi, L., Farris, R., de Villiers Engelbrecht, L., Mocci, F., Maria Carbonaro, C., Innocenzi, P., 2022. At the root of l-lysine emission in aqueous solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 283, 121717. doi: 10.1016/j.saa.2022.121717
|
Sun, T., Zhang, X.Q., Qiu, B.W., Luo, Y.F., Ling, Y.Q., Chen, Y., Xu, Z.W., Liang, M., Zou, H.W., 2022. Controllable construction of gradient modulus intermediate layer on high strength and high modulus carbon fibers to enhance interfacial properties of epoxy composites by efficient electrochemical grafting. Compos. Part B Eng. 247, 110279. doi: 10.1016/j.compositesb.2022.110279
|
Teng, N., Dai, J.Y., Wang, S.P., Hu, J.Y., Liu, X.Q., 2022. Hyperbranched flame retardant for epoxy resin modification: simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chem. Eng. J. 428, 131226. doi: 10.1016/j.cej.2021.131226
|
Tesser, R., Santacesaria, E., Di Serio, M., Di Nuzzi, G., Fiandra, V., 2007. Kinetics of glycerol chlorination with hydrochloric acid: A new route to α, γ-dichlorohydrin. Ind. Eng. Chem. Res. 46, 6456–6465. doi: 10.1021/ie070708n
|
Tian, Q., Yuan, Y.C., Rong, M.Z., Zhang, M.Q., 2009. A thermally remendable epoxy resin. J. Mater. Chem. 19, 1289–1296. doi: 10.1039/b811938d
|
Wang, W.T., Yu, B.S., Zhang, Y.W., Peng, M., 2022. Fully aminated rigid-rod aramid reinforced high strength epoxy resin and its composite with carbon fibers. Compos. Sci. Technol. 221, 109324. doi: 10.1016/j.compscitech.2022.109324
|
Yu, Z., Ma, S.Q., Liu, Y.L., Su, Y., Feng, H.Z., Li, P.Y., Dong, Y.X., Tang, Z.B., Zhang, K.W., Zhu, J., 2022. Facile synthesis of bio-based latent curing agent and its high-Tg epoxy network. Eur. Polym. J. 164, 110965. doi: 10.1016/j.eurpolymj.2021.110965
|
Zhang, X., Xu, C.J., Liu, Z., Shi, S.Q., Li, J.Z., Luo, J., Gao, Q., 2022a. A water-resistant and mildewproof soy protein adhesive enhanced by epoxidized xylitol. Ind. Crops Prod. 180, 114794. doi: 10.1016/j.indcrop.2022.114794
|
Zhang, Y.B., Liu, R., Yu, R.Z., Yang, K.M., Guo, L.L., Yan, H.X., 2022b. Phosphorus-free hyperbranched polyborate flame retardant: ultra-high strength and toughness, reduced fire hazards and unexpected transparency for epoxy resin. Compos. Part B Eng. 242, 110101. doi: 10.1016/j.compositesb.2022.110101
|
Zhang, Y.H., Yuan, L., Liang, G.Z., Gu, A.J., 2018. Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener. Ind. Eng. Chem. Res. 57, 12397–12406. doi: 10.1021/acs.iecr.8b02572
|
Zhang, Z., Li, J.S., Wang, Z.Y., Long, S.Y., Jiang, S.J., Liu, G.L., 2020. Preparation and performance characterization of a novel high-performance epoxy resin modified reactive liquid asphalt. Constr. Build. Mater. 263, 120113. doi: 10.1016/j.conbuildmat.2020.120113
|
Zhong, Z.K., Sun, X.S., 2007. Plywood adhesives by blending soy protein polymer with phenol-formaldehyde resin. J. Biobased Mater. Bioenergy 1, 380–387. doi: 10.1166/jbmb.2007.014
|
Zou, G.L., Sun, X.K., Liu, X.H., Zhang, J.J., 2020. Influence factors on using recycled concrete aggregate in foamed asphalt mixtures based on tensile strength and moisture resistance. Constr. Build. Mater. 265, 120363. doi: 10.1016/j.conbuildmat.2020.120363
|