Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Xiaohan Wang, Jinwon Jang, Yanqun Su, Jingang Liu, Hongjie Zhang, Zhibin He, Yonghao Ni. Starting materials, processes and characteristics of bio-based foams: A review[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 160-173. doi: 10.1016/j.jobab.2024.01.004
Citation: Xiaohan Wang, Jinwon Jang, Yanqun Su, Jingang Liu, Hongjie Zhang, Zhibin He, Yonghao Ni. Starting materials, processes and characteristics of bio-based foams: A review[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 160-173. doi: 10.1016/j.jobab.2024.01.004

Starting materials, processes and characteristics of bio-based foams: A review

doi: 10.1016/j.jobab.2024.01.004
More Information
  • Corresponding author: E-mail address: zhe@unb.ca (Z. He); E-mail address: yonghao@unb.ca (Y. Ni)
  • Available Online: 2024-01-24
  • Publish Date: 2024-05-01
  • Biofoam products have attracted considerable attention lately because there is a growing demand for green/sustainable products. To this end, various biobased foams have either been developed or are currently in development, e.g., bio-based polyurethanes (PUs), polylactic acid (PLA), starch, and polyhydroxyalkanotates (PHAs). Indeed, significant progress has been made; however, challenges still persist, for example, biobased foam products have poor processability, inferior compatibility, thermal and strength properties. In this review, we focus on five biofoam products: namely bio-based PUs, PLA, starch, PHAs, and cellulose biofoam products, along with their properties and performance, as well as their manufacturing processes. Further efforts are still needed to unlock the full potential of these bio-based products and meet the goal of complementing and gradually replacing some of their fossil-based counterparts. Finally, the challenges, as well as arising opportunities of future research directions are discussed.

     

  • Declaration of Competing Interest
    The authors declare there is no conflict of interests.
  • loading
  • Ahvazi, B., Ngo, T.D., 2018. Application of lignins in formulation and manufacturing bio-based polyurethanes by 31P NMR spectroscopy. In: Poletto, M. (Ed.), Lignin-Trends and Applications. InTech, London.
    Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N.S., Singh, S.K., Hodge, D.B., Nejad, M., 2019. Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11, 1202. doi: 10.3390/polym11071202
    Alma, M.H., Salan, T.F., Tozluoglu, A., Gonultas, O., Candan, Z., 2017. Green composite materials from liquefied biomass. In: Green Composites. De Gruyter, Boston, pp. 1–32.
    Ameli, A., Jahani, D., Nofar, M., Jung, P.U., Park, C.B., 2013. Processing and characterization of solid and foamed injection-molded polylactide with talc. J. Cell. Plast. 49, 351–374. doi: 10.1177/0021955X13481993
    Averous, L., Moro, L., Dole, P., Fringant, C., 2000. Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41, 4157–4167. doi: 10.1016/S0032-3861(99)00636-9
    Bhandari, J., Mishra, H., Mishra, P.K., Wimmer, R., Ahmad, F.J., Talegaonkar, S., 2017. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int. J. Nanomed. 12, 2021–2031. doi: 10.2147/IJN.S124318
    Błażek, K., Datta, J., 2019. Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit. Rev. Environ. Sci. Technol. 49, 173–211. doi: 10.1080/10643389.2018.1537741
    Carriço, C.S., Fraga, T., Pasa, V.M.D., 2016. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53–61. doi: 10.1016/j.eurpolymj.2016.10.012
    Cervin, N.T., Andersson, L., Ng, J.B.S., Olin, P., Bergström, L., Wågberg, L., 2013. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14, 503–511. doi: 10.1021/bm301755u
    Chen, G.Q., 2009. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38, 2434–2446. doi: 10.1039/b812677c
    Chen, L.M., Rende, D., Schadler, L.S., Ozisik, R., 2013. Polymer nanocomposite foams. J. Mater. Chem. A 1, 3837–3850. doi: 10.1039/c2ta00086e
    Chevali, V., Kandare, E., 2016. Rigid biofoam composites as eco-efficient construction materials. In: Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier, Amsterdam, pp. 275–304.
    Chubarenko, I., Bagaev, A., Zobkov, M., Esiukova, E., 2016. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112. doi: 10.1016/j.marpolbul.2016.04.048
    Clark, J.H., Farmer, T.J., Ingram, I.D.V., Lie, Y., North, M., 2018. Renewable self-blowing non-isocyanate polyurethane foams from lysine and sorbitol. Eur. J. Org. Chem. 2018, 4265–4271. doi: 10.1002/ejoc.201800665
    Cobut, A., Sehaqui, H., Berglund, L.A., 2014. Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix. BioResources 9, 3276–3289.
    Cornille, A., Auvergne, R., Figovsky, O., Boutevin, B., Caillol, S., 2017. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 87, 535–552. doi: 10.1016/j.eurpolymj.2016.11.027
    Corre, Y.M., Duchet, J., Reignier, J., Maazouz, A., 2011. Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol. Acta 50, 613–629. doi: 10.1007/s00397-011-0538-1
    Członka, S., Strąkowska, A., Strzelec, K., Kairytė, A., Kremensas, A., 2020. Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Materials 13, 1108. doi: 10.3390/ma13051108
    Datta, R., Henry, M., 2006. Lactic acid: recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 81, 1119–1129. doi: 10.1002/jctb.1486
    de Haro, J.C., Allegretti, C., Smit, A.T., Turri, S., D'Arrigo, P., Griffini, G., 2019. Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection. ACS Sustain. Chem. Eng. 7, 11700–11711. doi: 10.1021/acssuschemeng.9b01873
    Demitri, C., Giuri, A., Raucci, M.G., Giugliano, D., Madaghiele, M., Sannino, A., Ambrosio, L., 2014. Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus 4, 20130053. doi: 10.1098/rsfs.2013.0053
    Di, Y.W., Iannace, S., Di Maio, E., Nicolais, L., 2005. Reactively modified poly(lactic acid): properties and foam processing. Macromol. Mater. Eng. 290, 1083–1090. doi: 10.1002/mame.200500115
    Doroudiani, S., Park, C.B., Kortschot, M.T., 1996. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polym. Eng. Sci. 36, 2645–2662. doi: 10.1002/pen.10664
    Duan, C., Tian, C.C., Feng, X.M., Tian, G.D., Liu, X.S., Ni, Y.H., 2023. Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp. Bioresour. Technol. 370, 128543. doi: 10.1016/j.biortech.2022.128543
    Düsseldorf, H., 2019. New Adhesives, Digital Solutions and 3D Printing Applications Available at:. https://www.henkel.com/press-and-media/press-releases-and-kits/2019-03-21-henkel-is-driving-innovation-in-the-furniture-industry-922560.
    Espigulé, E., Puigvert, X., Vilaseca, F., Méndez, J.A., Mutjé, P., Girones, J., 2013. Thermoplastic starch-based composites reinforced with rape fibers: water uptake and thermomechanical properties. BioResources 8, 2620–2630.
    Ferreira, E.S., Rezende, C.A., 2018. Simple preparation of cellulosic lightweight materials from Eucalyptus pulp. ACS Sustain. Chem. Eng. 6, 14365–14373. doi: 10.1021/acssuschemeng.8b03071
    Glenn, G.M., Orts, W.J., 2001. Properties of starch-based foam formed by compression/explosion processing. Ind. Crops Prod. 13, 135–143. doi: 10.1016/S0926-6690(00)00060-1
    Gordeyeva, K.S., Fall, A.B., Hall, S., Wicklein, B., Bergström, L., 2016. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. J. Colloid Interface Sci. 472, 44–51. doi: 10.1016/j.jcis.2016.03.031
    Göttermann, S., Weinmann, S., Bonten, C., Standau, T., Altstädt, V., 2016. Modified standard polylactic acid (PLA) for extrusion foaming. In: AIP Conference Proceedings. Graz, Austria.
    Guan, J.J., Hanna, M.A., 2004. Extruding foams from corn starch acetate and native corn starch. Biomacromolecules 5, 2329–2339. doi: 10.1021/bm049512m
    Guedes, J., Florentino, W.M., Mulinari, D.R., 2016. Thermoplastics polymers reinforced with natural fibers. In: Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. Elsevier, Amsterdam, pp. 55–73.
    Gupta, K.M., 2011. Starch based composites for packaging applications. In: Handbook of Bioplastics and Biocomposites Engineering Applications, 24. John Wiley & Sons, Hoboken, p. 189.
    Härkäsalmi, T., Lehmonen, J., Itälä, J., Peralta, C., Siljander, S., Ketoja, J.A., 2017. Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materials. Cellulose 24, 5053–5068. doi: 10.1007/s10570-017-1484-6
    Hassan, M.M., Tucker, N., Le Guen, M.J., 2020. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydr. Polym. 230, 115675. doi: 10.1016/j.carbpol.2019.115675
    Hatakeyama, H., Hirogaki, A., Matsumura, H., Hatakeyama, T., 2013. Glass transition temperature of polyurethane foams derived from lignin by controlled reaction rate. J. Therm. Anal. Calorim. 114, 1075–1082. doi: 10.1007/s10973-013-3132-1
    He, S.H., Liu, C., Chi, X.W., Zhang, Y.D., Yu, G., Wang, H.S., Li, B., Peng, H., 2019. Bio-inspired lightweight pulp foams with improved mechanical property and flame retardancy via borate cross-linking. Chem. Eng. J. 371, 34–42. doi: 10.1016/j.cej.2019.04.018
    Hilmi, H., Zainuddin, F., Cheng, T.S., Lan, D.N.U., 2017. Mechanical properties of palm oil based bio-polyurethane foam of free rise and various densities. In: AIP Conference Proceedings. Langkawi, Malaysia.
    Hilmi, H., Zainuddin, F., Ngoc Uy Lan, D., 2019. Mechanical properties of polytetrafluoroethylene (PTFE) powder reinforced bio-based palm oil polyurethane (POPU) composite foam. Mater. Today Proc. 16, 1708–1714. doi: 10.1016/j.matpr.2019.06.040
    Himabindu, M., Kamalakar, K., Karuna, M., Palanisamy, A., 2017. Karanja oil polyol and rigid polyurethane biofoams for thermal insulation. J. Renew. Mater. 5, 124–131.
    Hojabri, L., Kong, X.H., Narine, S.S., 2009. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10, 884–891. doi: 10.1021/bm801411w
    Hou, Q.P., Wang, X.W., 2017. The effect of PVA foaming characteristics on foam forming. Cellulose 24, 4939–4948. doi: 10.1007/s10570-017-1452-1
    Hu, S.J., Luo, X.L., Li, Y.B., 2014. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7, 66–72. doi: 10.1002/cssc.201300760
    Javadi, A., Srithep, Y., Lee, J., Pilla, S., Clemons, C., Gong, S.Q., Turng, L.S., 2010. Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos. Part A 41, 982–990. doi: 10.1016/j.compositesa.2010.04.002
    Jin, F.L., Zhao, M., Park, M., Park, S.J., 2019. Recent trends of foaming in polymer processing: a review. Polymers 11, 953. doi: 10.3390/polym11060953
    Kaewtatip, K., Chiarathanakrit, C., Riyajan, S.A., 2018. The effects of egg shell and shrimp shell on the properties of baked starch foam. Powder Technol. 335, 354–359. doi: 10.1016/j.powtec.2018.05.030
    Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., 2012. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind. Crops Prod. 37, 542–546. doi: 10.1016/j.indcrop.2011.07.034
    Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., 2014. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr. Polym. 110, 70–77. doi: 10.1016/j.carbpol.2014.03.067
    Karlsson, K., Schuster, E., Stading, M., Rigdahl, M., 2015. Foaming behavior of water-soluble cellulose derivatives: hydroxypropyl methylcellulose and ethyl hydroxyethyl cellulose. Cellulose 22, 2651–2664. doi: 10.1007/s10570-015-0669-0
    Khan, A., Wen, Y., Huq, T., Ni, Y., 2018. Cellulosic nanomaterials in food and nutraceutical applications: a review. J. Agric. Food Chem. 66, 8–19. doi: 10.1021/acs.jafc.7b04204
    Khemani, K.C., 1997. Polymeric foams: an overview. In: Khemani, K.C. (Ed.), Polymeric Foams. Chemical Society, American Washington, DC.
    Koponen, A., Jäsberg, A., Lappalainen, T., Kiiskinen, H., 2018. The effect of in-line foam generation on foam quality and sheet formation in foam forming. Nord. Pulp Pap. Res. J. 33, 482–495. doi: 10.1515/npprj-2018-3051
    Kormin, S., Rus, A.Z.M., Azahari, M.S.M., 2017. Preparation of polyurethane foams using liquefied oil palm mesocarp fibre (OPMF) and renewable monomer from waste cooking oil. In: AIP Conference Proceedings. Astana, Kazakhstan.
    Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M., 2017. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55. doi: 10.3390/bioengineering4020055
    Krämer, R.H., Zammarano, M., Linteris, G.T., Gedde, U.W., Gilman, J.W., 2010. Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 95, 1115–1122. doi: 10.1016/j.polymdegradstab.2010.02.019
    Kurańska, M., Beneš, H., Sałasińska, K., Prociak, A., Malewska, E., Polaczek, K., 2020. Development and characterization of "green open-cell polyurethane foams" with reduced flammability. Materials 13, 5459. doi: 10.3390/ma13235459
    Kurańska, M., Cabulis, U., Prociak, A., Polaczek, K., Uram, K., Kirpluks, M., 2022. Scale-up and testing of polyurethane bio-foams as potential cryogenic insulation materials. Materials 15, 3469. doi: 10.3390/ma15103469
    Laguna-Gutierrez, E., Pinto, J., Kumar, V., Rodriguez-Mendez, M.L., Rodriguez-Perez, M.A., 2018. Improving the extensional rheological properties and foamability of high-density polyethylene by means of chemical crosslinking. J. Cell. Plast. 54, 333–357. doi: 10.1177/0021955x16681454
    Lehmonen, J., Rantanen, T., Kinnunen-Raudaskoski, K., 2019. Upscaling of Foam Forming Technology for Pilot Scale Available at:. https://imisrise.tappi.org/TAPPI/Products/19/AUG/19AUG461.aspx.
    Li, B., Zhou, M.Y., Huo, W.Z., Cai, D., Qin, P.Y., Cao, H., Tan, T.W., 2020a. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crops Prod. 143, 111887. doi: 10.1016/j.indcrop.2019.111887
    Li, F.Y., Guan, K.K., Liu, P., Li, G., Li, J.F., 2014. Ingredient of biomass packaging material and compare study on cushion properties. Int. J. Polym. Sci. 2014, 146509.
    Li, H., Liang, Y., Li, P.C., He, C.B., 2020b. Conversion of biomass lignin to high-value polyurethane: a review. J. Bioresour. Bioprod. 5, 163–179. doi: 10.1016/j.jobab.2020.07.002
    Li, J.B., Yang, X., Xiu, H.J., Dong, H.L., Song, T., Ma, F.Y., Feng, P., Zhang, X.F., Kozliak, E., Ji, Y., 2019a. Structure and performance control of plant fiber based foam material by fibrillation via refining treatment. Ind. Crops Prod. 128, 186–193. doi: 10.1016/j.indcrop.2018.10.085
    Li, J.G., Liu, X., Zheng, Q.H., Chen, L.H., Huang, L.L., Ni, Y.H., Ouyang, X.H., 2019b. Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose 26, 6393–6400. doi: 10.1007/s10570-019-02587-7
    Li, R., Du, J.Y., Zheng, Y.M., Wen, Y.Q., Zhang, X.X., Yang, W.B., Lue, A., Zhang, L.N., 2017. Ultra-lightweight cellulose foam material: preparation and properties. Cellulose 24, 1417–1426. doi: 10.1007/s10570-017-1196-y
    Li, Z.B., Yang, J., Loh, X.J., 2016. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 8, e265. doi: 10.1038/am.2016.48
    Liao, J.M., Luan, P.C., Zhang, Y.X., Chen, L., Huang, L.Y., Mo, L.H., Li, J., Xiong, Q.G., 2022. A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. J. Environ. Chem. Eng. 10, 107788. doi: 10.1016/j.jece.2022.107788
    Liao, Q., Tsui, A., Billington, S., Frank, C.W., 2012. Extruded foams from microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and its blends with cellulose acetate butyrate. Polym. Eng. Sci. 52, 1495–1508. doi: 10.1002/pen.23087
    Lim, L.T., Auras, R., Rubino, M., 2008. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33, 820–852. doi: 10.1016/j.progpolymsci.2008.05.004
    Liu, Q.S., Zhao, M.M., Zhou, Y.Q., Yang, Q.B., Shen, Y., Gong, R.H., Zhou, F.L., Li, Y.H., Deng, B.Y., 2018a. Polylactide single-polymer composites with a wide melt-processing window based on core-sheath PLA fibers. Mater. Des. 139, 36–44. doi: 10.1016/j.matdes.2017.10.066
    Liu, Y., Kong, S., Xiao, H., Bai, C.Y., Lu, P., Wang, S.F., 2018b. Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC. Carbohydr. Polym. 182, 92–97. doi: 10.1016/j.carbpol.2017.10.078
    Liu, Y., Lu, P., Xiao, H.N., Heydarifard, S., Wang, S.F., 2017. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams. Cellulose 24, 241–251. doi: 10.1007/s10570-016-1103-y
    Lomelí-Ramírez, M.G., Barrios-Guzmán, A.J., García-Enriquez, S., De Jesús Rivera-Prado, J., Manríquez-González, R., 2014. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression. BioResources 9, 2960–2974.
    Mehta, R., Kumar, V., Bhunia, H., Upadhyay, S.N., 2005. Synthesis of poly(lactic acid): a review. J. Macromol. Sci. Part C 45, 325–349. doi: 10.1080/15321790500304148
    Meng, L.H., Liu, H.S., Yu, L., Duan, Q.F., Chen, L., Liu, F.S., Shao, Z.Z., Shi, K.L., Lin, X.Y., 2019. How water acting as both blowing agent and plasticizer affect on starch-based foam. Ind. Crops Prod. 134, 43–49. doi: 10.1016/j.indcrop.2019.03.056
    Mira, I., Andersson, M., Boge, L., Blute, I., Carlsson, G., Salminen, K., Lappalainen, T., Kinnunen, K., 2014. Foam forming revisited Part I. Foaming behaviour of fibre-surfactant systems. Nord. Pulp Pap. Res. J. 29, 679–688. doi: 10.3183/npprj-2014-29-04-p679-689
    Mondal, A.K., Qin, C.R., Ragauskas, A.J., Ni, Y.H., Huang, F., 2020. Preparation and characterization of various kraft lignins and impact on their pyrolysis behaviors. Ind. Eng. Chem. Res. 59, 3310–3320. doi: 10.1021/acs.iecr.9b06690
    Moo-Tun, N.M., Iñiguez-Covarrubias, G., Valadez-Gonzalez, A., 2020. Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polym. Test. 86, 106482. doi: 10.1016/j.polymertesting.2020.106482
    Mosanenzadeh, S.G., Naguib, H.E., Park, C.B., Atalla, N., 2013. Development, characterization, and modeling of environmentally friendly open-cell acoustic foams. Polym. Eng. Sci. 53, 1979–1989. doi: 10.1002/pen.23443
    Mosanenzadeh, S.G., Naguib, H.E., Park, C.B., Atalla, N., 2014. Development of polylactide open-cell foams with bimodal structure for high-acoustic absorption. J. Appl. Polym. Sci. 131, 39518. doi: 10.1002/app.39518
    Nechita, P., Năstac, S.M., 2022. Overview on foam forming cellulose materials for cushioning packaging applications. Polymers 14, 1963. doi: 10.3390/polym14101963
    Neumann, C.N.D., Bulach, W.D., Rehahn, M., Klein, R., 2011. Water-free synthesis of polyurethane foams using highly reactive diisocyanates derived from 5-hydroxymethylfurfural. Macromol. Rapid Commun. 32, 1373–1378. doi: 10.1002/marc.201100205
    Okoroafor, M.O., Frisch, K.C., 1995. Introduction to foams and foam formation. In: Handbook of Plastic Foams. Elsevier, Amsterdam, pp. 1–10.
    Ottenhall, A., Seppänen, T., Ek, M., 2018. Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose 25, 2599–2613. doi: 10.1007/s10570-018-1738-y
    Pan, Y., Zhou, Y.F., Du, X.Q., Xu, W.J., Lu, Y., Wang, F., Jiang, M., 2023. Preparation of bio-foam material from steam-exploded corn straw by in situ esterification modification. Polymers 15, 2222. doi: 10.3390/polym15092222
    Peng, J., Srithep, Y., Wang, J., Yu, E., Turng, L.S., Peng, X.F., 2013. Comparisons of microcellular polylactic acid parts injection molded with supercritical nitrogen and expandable thermoplastic microspheres: surface roughness, tensile properties, and morphology. J. Cell. Plast. 49, 33–45. doi: 10.1177/0021955X12450208
    Phaodee, P., Tangjaroensirirat, N., Sakdaronnarong, C., 2014. Biobased polystyrene foam-like material from crosslinked cassava starch and nanocellulose from sugarcane bagasse. BioResources 10, 348–368.
    Pilla, S., 2011. Engineering applications of bioplastics and biocomposites: an overview. In: Pilla, S. (Ed.), Handbook of Bioplastics and Biocomposites Engineering Applications. John Wiley & Sons, Inc., Hoboken, USA, pp. 1–15.
    Poussard, L., Mariage, J., Grignard, B., Detrembleur, C., Jérôme, C., Calberg, C., Heinrichs, B., De Winter, J., Gerbaux, P., Raquez, J.M., Bonnaud, L., Dubois, P., 2016. Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49, 2162–2171. doi: 10.1021/acs.macromol.5b02467
    Prociak, A., Kurańska, M., Uram, K., Wójtowicz, M., 2021. Bio-polyurethane foams modified with a mixture of bio-polyols of different chemical structures. Polymers 13, 2469. doi: 10.3390/polym13152469
    Radvan, B., Gatward, A.P.J., 1972. Formation of wet-laid webs by a foaming process. Tappi 55, 748.
    Richards, E., Rizvi, R., Chow, A., Naguib, H., 2008. Biodegradable composite foams of PLA and PHBV using subcritical CO2. J. Polym. Environ. 16, 258–266. doi: 10.1007/s10924-008-0110-y
    Saha, M.C., Mahfuz, H., Chakravarty, U.K., Uddin, M., Kabir, M.E., Jeelani, S., 2005. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Mater. Sci. Eng. A 406, 328–336. doi: 10.1016/j.msea.2005.07.006
    Samui, A.B., Kanai, T.P., 2019. Polyhydroxyalkanoates based copolymers. Int. J. Biol. Macromol. 140, 522–537. doi: 10.1016/j.ijbiomac.2019.08.147
    Sanami, M., Ravirala, N., Alderson, K., Alderson, A., 2014. Auxetic materials for sports applications. Procedia Eng. 72, 453–458. doi: 10.1016/j.proeng.2014.06.079
    Sarifuddin, N., Ismail, H., Ahmad, Z., 2012. Effect of fiber loading on properties of thermoplastic sago starch/kenaf core fiber biocomposites. BioResources 7, 4294–4306. doi: 10.15376/biores.7.3.4294-4306
    Sarika, P.R., Nancarrow, P., Khansaheb, A., Ibrahim, T., 2021. Progress in bio-based phenolic foams: synthesis, properties, and applications. ChemBioEng Rev. 8, 612–632. doi: 10.1002/cben.202100017
    Scott, J.L., Unali, G., Perosa, A., 2011. A "by-productless" cellulose foaming agent for use in imidazolium ionic liquids. Chem. Commun. 47, 2970–2972. doi: 10.1039/c0cc05057a
    Sescousse, R., Gavillon, R., Budtova, T., 2011. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr. Polym. 83, 1766–1774. doi: 10.1016/j.carbpol.2010.10.043
    Skoczinski, P., Carus, M., Tweddle, G., Ruiz, P., Guzman, D.D., Ravenstijn, J., Käb, H., Hark, N., Dammer, L., Raschka, A, 2023. Bio-based building blocks and polymers: global capacities, production and trends 2022–2027. Ind. Biotechnol. 19, 185–194.
    Soykeabkaew, N., Thanomsilp, C., Suwantong, O., 2015. A review: starch-based composite foams. Compos. Part A 78, 246–263.
    Standau, T., Zhao, C.J., Murillo Castellón, S., Bonten, C., Altstädt, V., 2019. Chemical modification and foam processing of polylactide (PLA). Polymers 11, 306. doi: 10.3390/polym11020306
    Su, Y.Q., Yang, B., Liu, J.G., Sun, B., Cao, C.Y., Zou, X.J., Lutes, R., He, Z.B., 2018. Prospects for replacement of some plastics in packaging with lignocellulose materials: a brief review. BioResources 13, 4550–576.
    Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269. doi: 10.1002/adma.200701215
    Tacha, S., Somord, K., Rattanawongkun, P., Intatha, U., Tawichai, N., Soykeabkaew, N., 2023. Bio-nanocomposite foams of starch reinforced with bacterial nanocellulose fibers. Mater. Today Proc. 75, 119–123.
    Timofeev, O., Jetsu, P., Kiiskinen, H., Keränen, J.T., 2016. Drying of foam-formed mats from virgin pine fibers. Dry. Technol. 34, 1210–1218. doi: 10.1080/07373937.2015.1103254
    Tomé, L.C., Fernandes, S.C.M., Sadocco, P., Causio, J., Silvestre, A.J.D., Pascoal Neto, C., Freire, C.S.R., 2012. Antibacterial thermoplastic starch-chitosan based materials prepared by melt-mixing. BioResources 7, 3398–3409. doi: 10.15376/biores.7.3.3398-3409
    Tondi, G., Link, M., Kolbitsch, C., Gavino, J., Luckeneder, P., Petutschnigg, A., Herchl, R., Van Doorslaer, C., 2016. Lignin-based foams: production process and characterization. BioResources 11, 2972–2986.
    Tsui, A., Frank, C.W., 2014. Impact of processing temperature and composition on foaming of biodegradable poly(hydroxyalkanoate) blends. Ind. Eng. Chem. Res. 53, 15896–15908. doi: 10.1021/ie5021766
    Tsui, A., Wright, Z., Frank, C.W., 2014. Prediction of gas solubility in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) melt to inform process design and resulting foam microstructure. Polym. Eng. Sci. 54, 2683–2695. doi: 10.1002/pen.23822
    Ventura, H., Sorrentino, L., Laguna-Gutierrez, E., Rodriguez-Perez, M.A., Ardanuy, M., 2018. Gas dissolution foaming as a novel approach for the production of lightweight biocomposites of PHB/natural fibre fabrics. Polymers 10, 249. doi: 10.3390/polym10030249
    Verlinden, R.A.J., Hill, D.J., Kenward, M.A., Williams, C.D., Radecka, I., 2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 102, 1437–1449. doi: 10.1111/j.1365-2672.2007.03335.x
    Walallavita, A.S., Verbeek, C.J.R., Lay, M.C., 2017. Biopolymer foams from Novatein thermoplastic protein and poly(lactic acid). J. Appl. Polym. Sci. 134, 45561.
    Wang, G.H., Liu, X.Q., Zhang, J.Y., Sui, W.J., Jang, J., Si, C.L., 2018. One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Ind. Crops Prod. 124, 216–225.
    Weusthuis, R.A., Kessler, B., Dielissen, M.P.M., Witholt, B., Eggink, G., 2005. Fermentative production of MCL poly(3-hydroxyalkanoate). In: Steinbüchel, A (Ed.), Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
    Wollerdorfer, M., Bader, H., 1998. Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind. Crops Prod. 8, 105–112.
    Woźniak-Braszak, A., Knitter, M., Markiewicz, E., Ingram, W.F., Spontak, R.J., 2019. Effect of composition on the molecular dynamics of biodegradable isotactic polypropylene/thermoplastic starch blends. ACS Sustain. Chem. Eng. 7, 16050–16059. doi: 10.1021/acssuschemeng.9b02774
    Wu, X., Yan, W., Zhou, Y.L., Luo, L., Yu, X.Y., Luo, L.C., Fan, M.Z., Du, G.B., Zhao, W.G., 2020. Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers. Ind. Crops Prod. 158, 113029.
    Xiang, W.C., Filpponen, I., Saharinen, E., Lappalainen, T., Salminen, K., Rojas, O.J., 2018. Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause–effect relations. ACS Sustain. Chem. Eng. 6, 14423–14431. doi: 10.1021/acssuschemeng.8b03102
    Xue, S.W., Jia, P., Ren, Q., Liu, X.C., Lee, R.E., Zhai, W.T., 2018. Improved expansion ratio and heat resistance of microcellular poly(L-lactide) foam via in situ formation of stereo complex crystallites. J. Cell. Plast. 54, 103–119.
    Yang, B., Qin, X.Y., Hu, H.C., Duan, C., He, Z.B., Ni, Y.H., 2020. Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp. Cellulose 27, 9653–9661. doi: 10.1007/s10570-020-03423-z
    Zepnik, S., Hildebrand, T., Kabasci, S., Ra-dusch, H.J., Wodke, T., 2013. Cellulose acetate for thermoplastic foam extrusion. Cellulose - Biomass Conversion. InTech, London.
    Zhang, C., Bhoyate, S., Ionescu, M., Kahol, P.K., Gupta, R.K., 2018. Highly flame retardant and bio-based rigid polyurethane foams derived from orange peel oil. Polym. Eng. Sci. 58, 2078–2087. doi: 10.1002/pen.24819
    Zhang, J., Hirschberg, V., Rodrigue, D., 2023. Mechanical fatigue of polymer foams: A review. Polym. Rev. 63, 866–894. doi: 10.1080/15583724.2023.2228874
    Zhang, Y.C., Rempel, C., Liu, Q., 2014a. Thermoplastic starch processing and characteristics: a review. Crit. Rev. Food Sci. Nutr. 54, 1353–1370. doi: 10.1080/10408398.2011.636156
    Zhang, Z., Ortiz, O., Goyal, R., Kohn, J., 2014b. Biodegradable polymers. In: Principles of Tissue Engineering. Elsevier, Amsterdam, pp. 441–473.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (366) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return