Citation: | Xiaohan Wang, Jinwon Jang, Yanqun Su, Jingang Liu, Hongjie Zhang, Zhibin He, Yonghao Ni. Starting materials, processes and characteristics of bio-based foams: A review[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 160-173. doi: 10.1016/j.jobab.2024.01.004 |
Ahvazi, B., Ngo, T.D., 2018. Application of lignins in formulation and manufacturing bio-based polyurethanes by 31P NMR spectroscopy. In: Poletto, M. (Ed.), Lignin-Trends and Applications. InTech, London.
|
Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N.S., Singh, S.K., Hodge, D.B., Nejad, M., 2019. Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11, 1202. doi: 10.3390/polym11071202
|
Alma, M.H., Salan, T.F., Tozluoglu, A., Gonultas, O., Candan, Z., 2017. Green composite materials from liquefied biomass. In: Green Composites. De Gruyter, Boston, pp. 1–32.
|
Ameli, A., Jahani, D., Nofar, M., Jung, P.U., Park, C.B., 2013. Processing and characterization of solid and foamed injection-molded polylactide with talc. J. Cell. Plast. 49, 351–374. doi: 10.1177/0021955X13481993
|
Averous, L., Moro, L., Dole, P., Fringant, C., 2000. Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41, 4157–4167. doi: 10.1016/S0032-3861(99)00636-9
|
Bhandari, J., Mishra, H., Mishra, P.K., Wimmer, R., Ahmad, F.J., Talegaonkar, S., 2017. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int. J. Nanomed. 12, 2021–2031. doi: 10.2147/IJN.S124318
|
Błażek, K., Datta, J., 2019. Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit. Rev. Environ. Sci. Technol. 49, 173–211. doi: 10.1080/10643389.2018.1537741
|
Carriço, C.S., Fraga, T., Pasa, V.M.D., 2016. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53–61. doi: 10.1016/j.eurpolymj.2016.10.012
|
Cervin, N.T., Andersson, L., Ng, J.B.S., Olin, P., Bergström, L., Wågberg, L., 2013. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14, 503–511. doi: 10.1021/bm301755u
|
Chen, G.Q., 2009. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38, 2434–2446. doi: 10.1039/b812677c
|
Chen, L.M., Rende, D., Schadler, L.S., Ozisik, R., 2013. Polymer nanocomposite foams. J. Mater. Chem. A 1, 3837–3850. doi: 10.1039/c2ta00086e
|
Chevali, V., Kandare, E., 2016. Rigid biofoam composites as eco-efficient construction materials. In: Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials. Elsevier, Amsterdam, pp. 275–304.
|
Chubarenko, I., Bagaev, A., Zobkov, M., Esiukova, E., 2016. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112. doi: 10.1016/j.marpolbul.2016.04.048
|
Clark, J.H., Farmer, T.J., Ingram, I.D.V., Lie, Y., North, M., 2018. Renewable self-blowing non-isocyanate polyurethane foams from lysine and sorbitol. Eur. J. Org. Chem. 2018, 4265–4271. doi: 10.1002/ejoc.201800665
|
Cobut, A., Sehaqui, H., Berglund, L.A., 2014. Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix. BioResources 9, 3276–3289.
|
Cornille, A., Auvergne, R., Figovsky, O., Boutevin, B., Caillol, S., 2017. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 87, 535–552. doi: 10.1016/j.eurpolymj.2016.11.027
|
Corre, Y.M., Duchet, J., Reignier, J., Maazouz, A., 2011. Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol. Acta 50, 613–629. doi: 10.1007/s00397-011-0538-1
|
Członka, S., Strąkowska, A., Strzelec, K., Kairytė, A., Kremensas, A., 2020. Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Materials 13, 1108. doi: 10.3390/ma13051108
|
Datta, R., Henry, M., 2006. Lactic acid: recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 81, 1119–1129. doi: 10.1002/jctb.1486
|
de Haro, J.C., Allegretti, C., Smit, A.T., Turri, S., D'Arrigo, P., Griffini, G., 2019. Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection. ACS Sustain. Chem. Eng. 7, 11700–11711. doi: 10.1021/acssuschemeng.9b01873
|
Demitri, C., Giuri, A., Raucci, M.G., Giugliano, D., Madaghiele, M., Sannino, A., Ambrosio, L., 2014. Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus 4, 20130053. doi: 10.1098/rsfs.2013.0053
|
Di, Y.W., Iannace, S., Di Maio, E., Nicolais, L., 2005. Reactively modified poly(lactic acid): properties and foam processing. Macromol. Mater. Eng. 290, 1083–1090. doi: 10.1002/mame.200500115
|
Doroudiani, S., Park, C.B., Kortschot, M.T., 1996. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polym. Eng. Sci. 36, 2645–2662. doi: 10.1002/pen.10664
|
Duan, C., Tian, C.C., Feng, X.M., Tian, G.D., Liu, X.S., Ni, Y.H., 2023. Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp. Bioresour. Technol. 370, 128543. doi: 10.1016/j.biortech.2022.128543
|
Düsseldorf, H., 2019. New Adhesives, Digital Solutions and 3D Printing Applications Available at:.
|
Espigulé, E., Puigvert, X., Vilaseca, F., Méndez, J.A., Mutjé, P., Girones, J., 2013. Thermoplastic starch-based composites reinforced with rape fibers: water uptake and thermomechanical properties. BioResources 8, 2620–2630.
|
Ferreira, E.S., Rezende, C.A., 2018. Simple preparation of cellulosic lightweight materials from Eucalyptus pulp. ACS Sustain. Chem. Eng. 6, 14365–14373. doi: 10.1021/acssuschemeng.8b03071
|
Glenn, G.M., Orts, W.J., 2001. Properties of starch-based foam formed by compression/explosion processing. Ind. Crops Prod. 13, 135–143. doi: 10.1016/S0926-6690(00)00060-1
|
Gordeyeva, K.S., Fall, A.B., Hall, S., Wicklein, B., Bergström, L., 2016. Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. J. Colloid Interface Sci. 472, 44–51. doi: 10.1016/j.jcis.2016.03.031
|
Göttermann, S., Weinmann, S., Bonten, C., Standau, T., Altstädt, V., 2016. Modified standard polylactic acid (PLA) for extrusion foaming. In: AIP Conference Proceedings. Graz, Austria.
|
Guan, J.J., Hanna, M.A., 2004. Extruding foams from corn starch acetate and native corn starch. Biomacromolecules 5, 2329–2339. doi: 10.1021/bm049512m
|
Guedes, J., Florentino, W.M., Mulinari, D.R., 2016. Thermoplastics polymers reinforced with natural fibers. In: Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems. Elsevier, Amsterdam, pp. 55–73.
|
Gupta, K.M., 2011. Starch based composites for packaging applications. In: Handbook of Bioplastics and Biocomposites Engineering Applications, 24. John Wiley & Sons, Hoboken, p. 189.
|
Härkäsalmi, T., Lehmonen, J., Itälä, J., Peralta, C., Siljander, S., Ketoja, J.A., 2017. Design-driven integrated development of technical and perceptual qualities in foam-formed cellulose fibre materials. Cellulose 24, 5053–5068. doi: 10.1007/s10570-017-1484-6
|
Hassan, M.M., Tucker, N., Le Guen, M.J., 2020. Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydr. Polym. 230, 115675. doi: 10.1016/j.carbpol.2019.115675
|
Hatakeyama, H., Hirogaki, A., Matsumura, H., Hatakeyama, T., 2013. Glass transition temperature of polyurethane foams derived from lignin by controlled reaction rate. J. Therm. Anal. Calorim. 114, 1075–1082. doi: 10.1007/s10973-013-3132-1
|
He, S.H., Liu, C., Chi, X.W., Zhang, Y.D., Yu, G., Wang, H.S., Li, B., Peng, H., 2019. Bio-inspired lightweight pulp foams with improved mechanical property and flame retardancy via borate cross-linking. Chem. Eng. J. 371, 34–42. doi: 10.1016/j.cej.2019.04.018
|
Hilmi, H., Zainuddin, F., Cheng, T.S., Lan, D.N.U., 2017. Mechanical properties of palm oil based bio-polyurethane foam of free rise and various densities. In: AIP Conference Proceedings. Langkawi, Malaysia.
|
Hilmi, H., Zainuddin, F., Ngoc Uy Lan, D., 2019. Mechanical properties of polytetrafluoroethylene (PTFE) powder reinforced bio-based palm oil polyurethane (POPU) composite foam. Mater. Today Proc. 16, 1708–1714. doi: 10.1016/j.matpr.2019.06.040
|
Himabindu, M., Kamalakar, K., Karuna, M., Palanisamy, A., 2017. Karanja oil polyol and rigid polyurethane biofoams for thermal insulation. J. Renew. Mater. 5, 124–131.
|
Hojabri, L., Kong, X.H., Narine, S.S., 2009. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10, 884–891. doi: 10.1021/bm801411w
|
Hou, Q.P., Wang, X.W., 2017. The effect of PVA foaming characteristics on foam forming. Cellulose 24, 4939–4948. doi: 10.1007/s10570-017-1452-1
|
Hu, S.J., Luo, X.L., Li, Y.B., 2014. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7, 66–72. doi: 10.1002/cssc.201300760
|
Javadi, A., Srithep, Y., Lee, J., Pilla, S., Clemons, C., Gong, S.Q., Turng, L.S., 2010. Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos. Part A 41, 982–990. doi: 10.1016/j.compositesa.2010.04.002
|
Jin, F.L., Zhao, M., Park, M., Park, S.J., 2019. Recent trends of foaming in polymer processing: a review. Polymers 11, 953. doi: 10.3390/polym11060953
|
Kaewtatip, K., Chiarathanakrit, C., Riyajan, S.A., 2018. The effects of egg shell and shrimp shell on the properties of baked starch foam. Powder Technol. 335, 354–359. doi: 10.1016/j.powtec.2018.05.030
|
Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., 2012. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind. Crops Prod. 37, 542–546. doi: 10.1016/j.indcrop.2011.07.034
|
Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., 2014. Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr. Polym. 110, 70–77. doi: 10.1016/j.carbpol.2014.03.067
|
Karlsson, K., Schuster, E., Stading, M., Rigdahl, M., 2015. Foaming behavior of water-soluble cellulose derivatives: hydroxypropyl methylcellulose and ethyl hydroxyethyl cellulose. Cellulose 22, 2651–2664. doi: 10.1007/s10570-015-0669-0
|
Khan, A., Wen, Y., Huq, T., Ni, Y., 2018. Cellulosic nanomaterials in food and nutraceutical applications: a review. J. Agric. Food Chem. 66, 8–19. doi: 10.1021/acs.jafc.7b04204
|
Khemani, K.C., 1997. Polymeric foams: an overview. In: Khemani, K.C. (Ed.), Polymeric Foams. Chemical Society, American Washington, DC.
|
Koponen, A., Jäsberg, A., Lappalainen, T., Kiiskinen, H., 2018. The effect of in-line foam generation on foam quality and sheet formation in foam forming. Nord. Pulp Pap. Res. J. 33, 482–495. doi: 10.1515/npprj-2018-3051
|
Kormin, S., Rus, A.Z.M., Azahari, M.S.M., 2017. Preparation of polyurethane foams using liquefied oil palm mesocarp fibre (OPMF) and renewable monomer from waste cooking oil. In: AIP Conference Proceedings. Astana, Kazakhstan.
|
Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M., 2017. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4, 55. doi: 10.3390/bioengineering4020055
|
Krämer, R.H., Zammarano, M., Linteris, G.T., Gedde, U.W., Gilman, J.W., 2010. Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 95, 1115–1122. doi: 10.1016/j.polymdegradstab.2010.02.019
|
Kurańska, M., Beneš, H., Sałasińska, K., Prociak, A., Malewska, E., Polaczek, K., 2020. Development and characterization of "green open-cell polyurethane foams" with reduced flammability. Materials 13, 5459. doi: 10.3390/ma13235459
|
Kurańska, M., Cabulis, U., Prociak, A., Polaczek, K., Uram, K., Kirpluks, M., 2022. Scale-up and testing of polyurethane bio-foams as potential cryogenic insulation materials. Materials 15, 3469. doi: 10.3390/ma15103469
|
Laguna-Gutierrez, E., Pinto, J., Kumar, V., Rodriguez-Mendez, M.L., Rodriguez-Perez, M.A., 2018. Improving the extensional rheological properties and foamability of high-density polyethylene by means of chemical crosslinking. J. Cell. Plast. 54, 333–357. doi: 10.1177/0021955x16681454
|
Lehmonen, J., Rantanen, T., Kinnunen-Raudaskoski, K., 2019. Upscaling of Foam Forming Technology for Pilot Scale Available at:.
|
Li, B., Zhou, M.Y., Huo, W.Z., Cai, D., Qin, P.Y., Cao, H., Tan, T.W., 2020a. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crops Prod. 143, 111887. doi: 10.1016/j.indcrop.2019.111887
|
Li, F.Y., Guan, K.K., Liu, P., Li, G., Li, J.F., 2014. Ingredient of biomass packaging material and compare study on cushion properties. Int. J. Polym. Sci. 2014, 146509.
|
Li, H., Liang, Y., Li, P.C., He, C.B., 2020b. Conversion of biomass lignin to high-value polyurethane: a review. J. Bioresour. Bioprod. 5, 163–179. doi: 10.1016/j.jobab.2020.07.002
|
Li, J.B., Yang, X., Xiu, H.J., Dong, H.L., Song, T., Ma, F.Y., Feng, P., Zhang, X.F., Kozliak, E., Ji, Y., 2019a. Structure and performance control of plant fiber based foam material by fibrillation via refining treatment. Ind. Crops Prod. 128, 186–193. doi: 10.1016/j.indcrop.2018.10.085
|
Li, J.G., Liu, X., Zheng, Q.H., Chen, L.H., Huang, L.L., Ni, Y.H., Ouyang, X.H., 2019b. Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose 26, 6393–6400. doi: 10.1007/s10570-019-02587-7
|
Li, R., Du, J.Y., Zheng, Y.M., Wen, Y.Q., Zhang, X.X., Yang, W.B., Lue, A., Zhang, L.N., 2017. Ultra-lightweight cellulose foam material: preparation and properties. Cellulose 24, 1417–1426. doi: 10.1007/s10570-017-1196-y
|
Li, Z.B., Yang, J., Loh, X.J., 2016. Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater. 8, e265. doi: 10.1038/am.2016.48
|
Liao, J.M., Luan, P.C., Zhang, Y.X., Chen, L., Huang, L.Y., Mo, L.H., Li, J., Xiong, Q.G., 2022. A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. J. Environ. Chem. Eng. 10, 107788. doi: 10.1016/j.jece.2022.107788
|
Liao, Q., Tsui, A., Billington, S., Frank, C.W., 2012. Extruded foams from microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and its blends with cellulose acetate butyrate. Polym. Eng. Sci. 52, 1495–1508. doi: 10.1002/pen.23087
|
Lim, L.T., Auras, R., Rubino, M., 2008. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33, 820–852. doi: 10.1016/j.progpolymsci.2008.05.004
|
Liu, Q.S., Zhao, M.M., Zhou, Y.Q., Yang, Q.B., Shen, Y., Gong, R.H., Zhou, F.L., Li, Y.H., Deng, B.Y., 2018a. Polylactide single-polymer composites with a wide melt-processing window based on core-sheath PLA fibers. Mater. Des. 139, 36–44. doi: 10.1016/j.matdes.2017.10.066
|
Liu, Y., Kong, S., Xiao, H., Bai, C.Y., Lu, P., Wang, S.F., 2018b. Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC. Carbohydr. Polym. 182, 92–97. doi: 10.1016/j.carbpol.2017.10.078
|
Liu, Y., Lu, P., Xiao, H.N., Heydarifard, S., Wang, S.F., 2017. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams. Cellulose 24, 241–251. doi: 10.1007/s10570-016-1103-y
|
Lomelí-Ramírez, M.G., Barrios-Guzmán, A.J., García-Enriquez, S., De Jesús Rivera-Prado, J., Manríquez-González, R., 2014. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression. BioResources 9, 2960–2974.
|
Mehta, R., Kumar, V., Bhunia, H., Upadhyay, S.N., 2005. Synthesis of poly(lactic acid): a review. J. Macromol. Sci. Part C 45, 325–349. doi: 10.1080/15321790500304148
|
Meng, L.H., Liu, H.S., Yu, L., Duan, Q.F., Chen, L., Liu, F.S., Shao, Z.Z., Shi, K.L., Lin, X.Y., 2019. How water acting as both blowing agent and plasticizer affect on starch-based foam. Ind. Crops Prod. 134, 43–49. doi: 10.1016/j.indcrop.2019.03.056
|
Mira, I., Andersson, M., Boge, L., Blute, I., Carlsson, G., Salminen, K., Lappalainen, T., Kinnunen, K., 2014. Foam forming revisited Part I. Foaming behaviour of fibre-surfactant systems. Nord. Pulp Pap. Res. J. 29, 679–688. doi: 10.3183/npprj-2014-29-04-p679-689
|
Mondal, A.K., Qin, C.R., Ragauskas, A.J., Ni, Y.H., Huang, F., 2020. Preparation and characterization of various kraft lignins and impact on their pyrolysis behaviors. Ind. Eng. Chem. Res. 59, 3310–3320. doi: 10.1021/acs.iecr.9b06690
|
Moo-Tun, N.M., Iñiguez-Covarrubias, G., Valadez-Gonzalez, A., 2020. Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polym. Test. 86, 106482. doi: 10.1016/j.polymertesting.2020.106482
|
Mosanenzadeh, S.G., Naguib, H.E., Park, C.B., Atalla, N., 2013. Development, characterization, and modeling of environmentally friendly open-cell acoustic foams. Polym. Eng. Sci. 53, 1979–1989. doi: 10.1002/pen.23443
|
Mosanenzadeh, S.G., Naguib, H.E., Park, C.B., Atalla, N., 2014. Development of polylactide open-cell foams with bimodal structure for high-acoustic absorption. J. Appl. Polym. Sci. 131, 39518. doi: 10.1002/app.39518
|
Nechita, P., Năstac, S.M., 2022. Overview on foam forming cellulose materials for cushioning packaging applications. Polymers 14, 1963. doi: 10.3390/polym14101963
|
Neumann, C.N.D., Bulach, W.D., Rehahn, M., Klein, R., 2011. Water-free synthesis of polyurethane foams using highly reactive diisocyanates derived from 5-hydroxymethylfurfural. Macromol. Rapid Commun. 32, 1373–1378. doi: 10.1002/marc.201100205
|
Okoroafor, M.O., Frisch, K.C., 1995. Introduction to foams and foam formation. In: Handbook of Plastic Foams. Elsevier, Amsterdam, pp. 1–10.
|
Ottenhall, A., Seppänen, T., Ek, M., 2018. Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose 25, 2599–2613. doi: 10.1007/s10570-018-1738-y
|
Pan, Y., Zhou, Y.F., Du, X.Q., Xu, W.J., Lu, Y., Wang, F., Jiang, M., 2023. Preparation of bio-foam material from steam-exploded corn straw by in situ esterification modification. Polymers 15, 2222. doi: 10.3390/polym15092222
|
Peng, J., Srithep, Y., Wang, J., Yu, E., Turng, L.S., Peng, X.F., 2013. Comparisons of microcellular polylactic acid parts injection molded with supercritical nitrogen and expandable thermoplastic microspheres: surface roughness, tensile properties, and morphology. J. Cell. Plast. 49, 33–45. doi: 10.1177/0021955X12450208
|
Phaodee, P., Tangjaroensirirat, N., Sakdaronnarong, C., 2014. Biobased polystyrene foam-like material from crosslinked cassava starch and nanocellulose from sugarcane bagasse. BioResources 10, 348–368.
|
Pilla, S., 2011. Engineering applications of bioplastics and biocomposites: an overview. In: Pilla, S. (Ed.), Handbook of Bioplastics and Biocomposites Engineering Applications. John Wiley & Sons, Inc., Hoboken, USA, pp. 1–15.
|
Poussard, L., Mariage, J., Grignard, B., Detrembleur, C., Jérôme, C., Calberg, C., Heinrichs, B., De Winter, J., Gerbaux, P., Raquez, J.M., Bonnaud, L., Dubois, P., 2016. Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49, 2162–2171. doi: 10.1021/acs.macromol.5b02467
|
Prociak, A., Kurańska, M., Uram, K., Wójtowicz, M., 2021. Bio-polyurethane foams modified with a mixture of bio-polyols of different chemical structures. Polymers 13, 2469. doi: 10.3390/polym13152469
|
Radvan, B., Gatward, A.P.J., 1972. Formation of wet-laid webs by a foaming process. Tappi 55, 748.
|
Richards, E., Rizvi, R., Chow, A., Naguib, H., 2008. Biodegradable composite foams of PLA and PHBV using subcritical CO2. J. Polym. Environ. 16, 258–266. doi: 10.1007/s10924-008-0110-y
|
Saha, M.C., Mahfuz, H., Chakravarty, U.K., Uddin, M., Kabir, M.E., Jeelani, S., 2005. Effect of density, microstructure, and strain rate on compression behavior of polymeric foams. Mater. Sci. Eng. A 406, 328–336. doi: 10.1016/j.msea.2005.07.006
|
Samui, A.B., Kanai, T.P., 2019. Polyhydroxyalkanoates based copolymers. Int. J. Biol. Macromol. 140, 522–537. doi: 10.1016/j.ijbiomac.2019.08.147
|
Sanami, M., Ravirala, N., Alderson, K., Alderson, A., 2014. Auxetic materials for sports applications. Procedia Eng. 72, 453–458. doi: 10.1016/j.proeng.2014.06.079
|
Sarifuddin, N., Ismail, H., Ahmad, Z., 2012. Effect of fiber loading on properties of thermoplastic sago starch/kenaf core fiber biocomposites. BioResources 7, 4294–4306. doi: 10.15376/biores.7.3.4294-4306
|
Sarika, P.R., Nancarrow, P., Khansaheb, A., Ibrahim, T., 2021. Progress in bio-based phenolic foams: synthesis, properties, and applications. ChemBioEng Rev. 8, 612–632. doi: 10.1002/cben.202100017
|
Scott, J.L., Unali, G., Perosa, A., 2011. A "by-productless" cellulose foaming agent for use in imidazolium ionic liquids. Chem. Commun. 47, 2970–2972. doi: 10.1039/c0cc05057a
|
Sescousse, R., Gavillon, R., Budtova, T., 2011. Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr. Polym. 83, 1766–1774. doi: 10.1016/j.carbpol.2010.10.043
|
Skoczinski, P., Carus, M., Tweddle, G., Ruiz, P., Guzman, D.D., Ravenstijn, J., Käb, H., Hark, N., Dammer, L., Raschka, A, 2023. Bio-based building blocks and polymers: global capacities, production and trends 2022–2027. Ind. Biotechnol. 19, 185–194.
|
Soykeabkaew, N., Thanomsilp, C., Suwantong, O., 2015. A review: starch-based composite foams. Compos. Part A 78, 246–263.
|
Standau, T., Zhao, C.J., Murillo Castellón, S., Bonten, C., Altstädt, V., 2019. Chemical modification and foam processing of polylactide (PLA). Polymers 11, 306. doi: 10.3390/polym11020306
|
Su, Y.Q., Yang, B., Liu, J.G., Sun, B., Cao, C.Y., Zou, X.J., Lutes, R., He, Z.B., 2018. Prospects for replacement of some plastics in packaging with lignocellulose materials: a brief review. BioResources 13, 4550–576.
|
Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269. doi: 10.1002/adma.200701215
|
Tacha, S., Somord, K., Rattanawongkun, P., Intatha, U., Tawichai, N., Soykeabkaew, N., 2023. Bio-nanocomposite foams of starch reinforced with bacterial nanocellulose fibers. Mater. Today Proc. 75, 119–123.
|
Timofeev, O., Jetsu, P., Kiiskinen, H., Keränen, J.T., 2016. Drying of foam-formed mats from virgin pine fibers. Dry. Technol. 34, 1210–1218. doi: 10.1080/07373937.2015.1103254
|
Tomé, L.C., Fernandes, S.C.M., Sadocco, P., Causio, J., Silvestre, A.J.D., Pascoal Neto, C., Freire, C.S.R., 2012. Antibacterial thermoplastic starch-chitosan based materials prepared by melt-mixing. BioResources 7, 3398–3409. doi: 10.15376/biores.7.3.3398-3409
|
Tondi, G., Link, M., Kolbitsch, C., Gavino, J., Luckeneder, P., Petutschnigg, A., Herchl, R., Van Doorslaer, C., 2016. Lignin-based foams: production process and characterization. BioResources 11, 2972–2986.
|
Tsui, A., Frank, C.W., 2014. Impact of processing temperature and composition on foaming of biodegradable poly(hydroxyalkanoate) blends. Ind. Eng. Chem. Res. 53, 15896–15908. doi: 10.1021/ie5021766
|
Tsui, A., Wright, Z., Frank, C.W., 2014. Prediction of gas solubility in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) melt to inform process design and resulting foam microstructure. Polym. Eng. Sci. 54, 2683–2695. doi: 10.1002/pen.23822
|
Ventura, H., Sorrentino, L., Laguna-Gutierrez, E., Rodriguez-Perez, M.A., Ardanuy, M., 2018. Gas dissolution foaming as a novel approach for the production of lightweight biocomposites of PHB/natural fibre fabrics. Polymers 10, 249. doi: 10.3390/polym10030249
|
Verlinden, R.A.J., Hill, D.J., Kenward, M.A., Williams, C.D., Radecka, I., 2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 102, 1437–1449. doi: 10.1111/j.1365-2672.2007.03335.x
|
Walallavita, A.S., Verbeek, C.J.R., Lay, M.C., 2017. Biopolymer foams from Novatein thermoplastic protein and poly(lactic acid). J. Appl. Polym. Sci. 134, 45561.
|
Wang, G.H., Liu, X.Q., Zhang, J.Y., Sui, W.J., Jang, J., Si, C.L., 2018. One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation. Ind. Crops Prod. 124, 216–225.
|
Weusthuis, R.A., Kessler, B., Dielissen, M.P.M., Witholt, B., Eggink, G., 2005. Fermentative production of MCL poly(3-hydroxyalkanoate). In: Steinbüchel, A (Ed.), Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
|
Wollerdorfer, M., Bader, H., 1998. Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind. Crops Prod. 8, 105–112.
|
Woźniak-Braszak, A., Knitter, M., Markiewicz, E., Ingram, W.F., Spontak, R.J., 2019. Effect of composition on the molecular dynamics of biodegradable isotactic polypropylene/thermoplastic starch blends. ACS Sustain. Chem. Eng. 7, 16050–16059. doi: 10.1021/acssuschemeng.9b02774
|
Wu, X., Yan, W., Zhou, Y.L., Luo, L., Yu, X.Y., Luo, L.C., Fan, M.Z., Du, G.B., Zhao, W.G., 2020. Thermal, morphological, and mechanical characteristics of sustainable tannin bio-based foams reinforced with wood cellulosic fibers. Ind. Crops Prod. 158, 113029.
|
Xiang, W.C., Filpponen, I., Saharinen, E., Lappalainen, T., Salminen, K., Rojas, O.J., 2018. Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause–effect relations. ACS Sustain. Chem. Eng. 6, 14423–14431. doi: 10.1021/acssuschemeng.8b03102
|
Xue, S.W., Jia, P., Ren, Q., Liu, X.C., Lee, R.E., Zhai, W.T., 2018. Improved expansion ratio and heat resistance of microcellular poly(L-lactide) foam via in situ formation of stereo complex crystallites. J. Cell. Plast. 54, 103–119.
|
Yang, B., Qin, X.Y., Hu, H.C., Duan, C., He, Z.B., Ni, Y.H., 2020. Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp. Cellulose 27, 9653–9661. doi: 10.1007/s10570-020-03423-z
|
Zepnik, S., Hildebrand, T., Kabasci, S., Ra-dusch, H.J., Wodke, T., 2013. Cellulose acetate for thermoplastic foam extrusion. Cellulose - Biomass Conversion. InTech, London.
|
Zhang, C., Bhoyate, S., Ionescu, M., Kahol, P.K., Gupta, R.K., 2018. Highly flame retardant and bio-based rigid polyurethane foams derived from orange peel oil. Polym. Eng. Sci. 58, 2078–2087. doi: 10.1002/pen.24819
|
Zhang, J., Hirschberg, V., Rodrigue, D., 2023. Mechanical fatigue of polymer foams: A review. Polym. Rev. 63, 866–894. doi: 10.1080/15583724.2023.2228874
|
Zhang, Y.C., Rempel, C., Liu, Q., 2014a. Thermoplastic starch processing and characteristics: a review. Crit. Rev. Food Sci. Nutr. 54, 1353–1370. doi: 10.1080/10408398.2011.636156
|
Zhang, Z., Ortiz, O., Goyal, R., Kohn, J., 2014b. Biodegradable polymers. In: Principles of Tissue Engineering. Elsevier, Amsterdam, pp. 441–473.
|