Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Long Cheng, Shanyong Wang, Hailong Lu, Jun Ye, Junming Xu, Kui Wang, Jianchun Jiang. Selective activation of C-C bonds in lignin model compounds and lignin for production of value-added chemicals[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 433-464. doi: 10.1016/j.jobab.2024.02.001
Citation: Long Cheng, Shanyong Wang, Hailong Lu, Jun Ye, Junming Xu, Kui Wang, Jianchun Jiang. Selective activation of C-C bonds in lignin model compounds and lignin for production of value-added chemicals[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 433-464. doi: 10.1016/j.jobab.2024.02.001

Selective activation of C-C bonds in lignin model compounds and lignin for production of value-added chemicals

doi: 10.1016/j.jobab.2024.02.001
Funds:

We are grateful for the financial support from the Foundation (No. JSBEM-S-202314) of Key Laboratory of Biomass Energy and Material of Jiangsu Province, and the National Natural Science Foundation of China (No. 32171713, No. 31870714).

  • Publish Date: 2024-02-10
  • Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by C-O bond and C-C bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of C-O converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for C-C bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on C-C bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of C-C bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized.

     

  • loading
  • [1]
    Abbas, A., Qadeer, K., Al-Hinai, A., Tarar, M.H., Qyyum, M.A., Al-Muhtaseb, A.H., Al Abri, R., Lee, M., Dickson, R., 2022. Process development and policy implications for large scale deployment of solar-driven electrolysis-based renewable methanol production. Green Chem. 24, 7630-7643.
    [2]
    Abdus Salam, M., Wayne Cheah, Y., Ho, P.H., Bernin, D., Achour, A., Nejadmoghadam, E., Öhrman, O., Arora, P., Olsson, L., Creaser, D., 2022. Elucidating the role of NiMoS-USY during the hydrotreatment of kraft lignin. Chem. Eng. J. 442, 136216.
    [3]
    Achour, A., Bernin, D., Creaser, D., Olsson, L., 2023. Evaluation of kraft and hydrolysis lignin hydroconversion over unsupported NiMoS catalyst. Chem. Eng. J. 453, 139829.
    [4]
    Alabi, A.O., Sambo, A.S., 2023. Comparative bio-energy potential of De-oiled coconut pulp and coconut shell: insights from physicochemical characterization, pyrolysis kinetics and thermodynamic studies. Fuel Process. Technol. 243, 107658.
    [5]
    Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour. Technol. 269, 465-475.
    [6]
    Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S., 2018. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264, 370-381.
    [7]
    Chen, H., Hong, D.H., Wan, K., Wang, J.J., Niu, B., Zhang, Y.Y., Long, D.H., 2022. Urchin-like Nb2O5 hollow microspheres enabling efficient and selective photocatalytic C-C bond cleavage in lignin models under ambient conditions. Chin. Chem. Lett. 33, 4357-4362.
    [8]
    Chen, M.Q., Dai, W., Wang, Y.S., Tang, Z.Y., Li, H., Li, C., Yang, Z.L., Wang, J., 2023a. Selective catalytic depolymerization of lignin to guaiacols over Mo-Mn/sepiolite in supercritical ethanol. Fuel 333, 126365.
    [9]
    Chen, M.Q., Li, H., Wang, Y.S., Tang, Z.Y., Dai, W., Li, C., Yang, Z.L., Wang, J., 2023b. Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol. Appl. Energy 332, 120489.
    [10]
    Cui, T.T., Ma, L.N., Wang, S.B., Ye, C.L., Liang, X., Zhang, Z.D., Meng, G., Zheng, L.R., Hu, H.S., Zhang, J.W., Duan, H.H., Wang, D.S., Li, Y.D., 2021. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 143, 9429-9439.
    [11]
    Deng, J., Zhou, C., Yang, Y., Nan, B., Dong, L., Cai, L.C., Li, L.N., Wang, Z.J., Yang, X.F., Chen, Z.P., 2023. Visible-light-driven selective cleavage of C-C bonds in lignin model substrates using carbon nitride-supported ruthenium single-atom catalyst. Chem. Eng. J. 462, 142282.
    [12]
    Dong, L., Xia, J., Guo, Y., Liu, X.H., Wang, H.F., Wang, Y.Q., 2021. Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. J. Catal. 394, 94-103.
    [13]
    Dou, X.M., Jiang, X., Li, W.Z., Zhu, C.F., Liu, Q.C., Lu, Q., Zheng, X.S., Chang, H.M., Jameel, H., 2020. Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Appl. Catal. B 268, 118429.
    [14]
    Gao, D.H., Ouyang, D.H., Zhao, X.B., 2022. Electro-oxidative depolymerization of lignin for production of value-added chemicals. Green Chem. 24, 8585-8605.
    [15]
    Gao, H.B., Qiu, L.L., Wu, F.P., Xiao, J., Zhao, Y.P., Liang, J., Bai, Y.H., Liu, F.J., Cao, J.P., 2023. Highly efficient catalytic hydrogenolysis of lignin model compounds over hydrotalcite-derived Ni/Al2O3 catalysts. Fuel 337, 127196.
    [16]
    Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101, 4775-4800.
    [17]
    Gu, F.W., Liu, H.C., 2020. Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose. Chin. J. Catal. 41, 1073-1080.
    [18]
    He, P.P., Chen, B., Huang, L., Liu, X.X., Qin, J.Z., Zhang, Z.H., Dai, W., 2022. Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. Chemistry 8, 1906-1927.
    [19]
    Hou, T.T., Luo, N.C., Li, H.J., Heggen, M., Lu, J.M., Wang, Y.H., Wang, F., 2017. Yin and Yang dual characters of CuOx clusters for C-C bond oxidation driven by visible light. ACS Catal. 7, 3850-3859.
    [20]
    Hu, Y.Z., Yan, L., Zhao, X.L., Wang, C.G., Li, S., Zhang, X.H., Ma, L.L., Zhang, Q., 2021. Mild selective oxidative cleavage of lignin C-C bonds over a copper catalyst in water. Green Chem. 23, 7030-7040.
    [21]
    Jindal, M., Uniyal, P., Thallada, B., 2023. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: a review. Bioresour. Technol. 385, 129396.
    [22]
    Jing, Y.X., Shakouri, M., Liu, X.H., Hu, Y.F., Guo, Y., Wang, Y.Q., 2022. Breaking C-C bonds and preserving C-O bonds in aromatic plastics and lignin via a reversing bond energy cleavage strategy. ACS Catal. 12, 10690-10699.
    [23]
    Kang, Y., Yang, Y.Q., Yao, X.Q., Liu, Y.R., Ji, X.Y., Xin, J.Y., Xu, J.L., Dong, H.X., Yan, D.X., He, H.Y., Lu, X.M., 2020. Weak bonds joint effects catalyze the cleavage of strong C-C bond of lignin-inspired compounds and lignin in air by ionic liquids. ChemSusChem 13, 5945-5953.
    [24]
    Kang, Y., Yao, X.Q., Yang, Y.Q., Xu, J.L., Xin, J.Y., Zhou, Q., Li, M.J., Lu, X.M., Zhang, S.J., 2021. Metal-free and mild photo-thermal synergism in ionic liquids for lignin Cα-Cβ bond cleavage to provide aldehydes. Green Chem. 23, 5524-5534.
    [25]
    Klass, D.L., 1998. Biomass for Renewable Energy, Fuels, and Chemicals. San Diego: Academic Press.
    [26]
    Kong, L.P., Dai, L.Y., Wang, Y.Y., 2023. Enhancing aromatic hydrocarbon formation via catalytic depolymerization of lignin waste over Ru/WOx/N-C catalyst. Fuel 332, 126263.
    [27]
    Kong, X.C., Liu, C., Xu, W.C., Han, Y., Fan, Y.Y., Lei, M., Li, M., Xiao, R., 2021. Catalytic hydroprocessing of stubborn lignin in supercritical methanol with Cu/CuMgAlOx catalyst. Fuel Process. Technol. 218, 106869.
    [28]
    Lee, T.W., Yang, J.W., 2018. Transition-metal-free conversion of lignin model compounds to high-value aromatics: scope and chemoselectivity. Green Chem. 20, 3761-3771.
    [29]
    Li, C., Shi, J.J., Zhang, K., Wang, Y.S., Tang, Z.Y., Chen, M.Q., 2022a. Efficient conversion of Kraft lignin to guaiacol and 4-alkyl guaiacols over Fe-Fe3C/C based catalyst under supercritical ethanol. Fuel 315, 123249.
    [30]
    Li, H.J., Liu, M.J., Liu, H.F., Luo, N.C., Zhang, C.F., Wang, F., 2020a. Amine-mediated bond cleavage in oxidized lignin models. ChemSusChem 13, 4660-4665.
    [31]
    Li, L.X., Kong, J.H., Zhang, H.M., Liu, S.J., Zeng, Q., Zhang, Y.Q., Ma, H., He, H.Y., Long, J.X., Li, X.H., 2020b. Selective aerobic oxidative cleavage of lignin C-C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Appl. Catal. B 279, 119343.
    [32]
    Li, P.J., Liu, R., Zhao, Z.J., Niu, F.S., Hu, K., 2023. Lignin C-C bond cleavage induced by consecutive two-photon excitation of a metal-free photocatalyst. Chem. Commun. 59, 1777-1780.
    [33]
    Li, S.Y., Li, Z.J., Yu, H., Sytu, M.R., Wang, Y.X., Beeri, D., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2020c. Solar-driven lignin oxidation via hydrogen atom transfer with a dye-sensitized TiO2 photoanode. ACS Energy Lett. 5, 777-784.
    [34]
    Li, S.Y., Wijethunga, U.K., Davis, A.H., Kim, S., Zheng, W.W., Sherman, B.D., Yoo, C.G., Leem, G., 2022b. Ru(Ⅱ) polypyridyl-modified TiO2 nanoparticles for photocatalytic C-C/C-O bond cleavage at room temperature. ACS Appl. Nano Mater. 5, 948-956.
    [35]
    Li, X.X., Ding, Y.M., Pan, X.L., Xing, Y.N., Zhang, B., Liu, X.Y., Tan, Y.L., Wang, H., Li, C.Z., 2022c. Scission of C-O and C-C linkages in lignin over RuRe alloy catalyst. J. Energy Chem. 67, 492-499.
    [36]
    Liang, D., Wu, J.C., Xie, C., Wen, J., Lyu, Y.H., Sofer, Z., Zheng, J.Y., Wang, S.Y., 2022. Efficiently and selectively photocatalytic cleavage of C-C bond by C3N4 nanosheets: defect-enhanced engineering and rational reaction route. Appl. Catal. B 317, 121690.
    [37]
    Liao, Y.H., D'Halluin, M., Makshina, E., Verboekend, D., Sels, B.F., 2018. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl. Catal. B 234, 117-129.
    [38]
    Lim, S.H., Jang, H., Kim, M.J., Wee, K.R., Lim, D.H., Kim, Y.I., Cho, D.W., 2022. Visible-light-induced selective C-C bond cleavage reactions of dimeric β-O-4 and β-1 lignin model substrates utilizing amine-functionalized fullerene. J. Org. Chem. 87, 2289-2300.
    [39]
    Lin, F., Ma, Y.L., Sun, Y.G., Zhao, K.H., Gao, T.T., Zhu, Y.B., 2021. Heterogeneous Ni-Ru/H-ZSM-5 one-pot catalytic conversion of lignin into monophenols. Renew. Energy 170, 1070-1080.
    [40]
    Liu, H.F., Li, H.J., Lu, J.M., Zeng, S., Wang, M., Luo, N.C., Xu, S.T., Wang, F., 2018. Photocatalytic cleavage of C-C bond in lignin models under visible light on mesoporous graphitic carbon nitride through π-π stacking interaction. ACS Catal. 8, 4761-4771.
    [41]
    Liu, H.F., Li, H.J., Luo, N.C., Wang, F., 2020a. Visible-light-induced oxidative lignin C-C bond cleavage to aldehydes using vanadium catalysts. ACS Catal. 10, 632-643.
    [42]
    Liu, M.Y., Han, B.X., Dyson, P.J., 2022a. Simultaneous generation of methyl esters and CO in lignin transformation. Angew. Chem. Int. Ed Engl. 61, e202209093.
    [43]
    Liu, M.Y., Zhang, Z.R., Yan, J., Liu, S.S., Liu, H.Z., Liu, Z.T., Wang, W.T., He, Z.H., Han, B.X., 2020b. Aerobic oxidative cleavage and esterification of C(OH)-C bonds. Chemistry 6, 3288-3296.
    [44]
    Liu, X.W., Wang, L.G., Zhai, L.J., Wu, C.L., Xu, H.J., 2022b. H2O2-promoted C-C bond oxidative cleavage of β-O-4 lignin models to benzanilides using water as a solvent under metal-free conditions. Green Chem. 24, 4395-4398.
    [45]
    Lu, X.Y., Wang, D.D., Guo, H.Q., Xiu, P.C., Chen, J.J., Qin, Y., Robin, H.M., Xu, C.Z., Zhang, X.G., Gu, X.L., 2022. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2-ZrO2/WO3/γ-Al2O3 catalyst. Chin. J. Chem. Eng. 48, 191-201.
    [46]
    Ma, L.N., Zhou, H., Kong, X.G., Li, Z.H., Duan, H.H., 2021. An electrocatalytic strategy for C-C bond cleavage in lignin model compounds and lignin under ambient conditions. ACS Sustain. Chem. Eng. 9, 1932-1940.
    [47]
    Meng, Q.L., Yan, J., Wu, R.Z., Liu, H.Z., Sun, Y., Wu, N.N., Xiang, J.F., Zheng, L.R., Zhang, J., Han, B.X., 2021. Sustainable production of benzene from lignin. Nat. Commun. 12, 4534.
    [48]
    Mushtaq, U., Park, J., Riaz, A., Ranaware, V., Khan, M.K., Verma, D., Kim, J., 2021. High-yield production of deoxygenated monomers from kraft lignin over ZnO-co/N-CNTs in water. ACS Sustain. Chem. Eng. 9, 3232-3245.
    [49]
    Nguyen, S.T., Murray, P.R.D., Knowles, R.R., 2020. Light-driven depolymerization of native lignin enabled by proton-coupled electron transfer. ACS Catal. 10, 800-805.
    [50]
    Parthasarathi, R., Romero, R.A., Redondo, A., Gnanakaran, S., 2011. Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2, 2660-2666.
    [51]
    Salam, M.A., Cheah, Y.W., Ho, P.H., Olsson, L., Creaser, D., 2021. Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio. Sustain. Energy Fuels 5, 3445-3457.
    [52]
    Sahayaraj, D.V., Lusi, A., Kohler, A.J., Bateni, H., Radhakrishnan, H., Saraeian, A., Shanks, B.H., Bai, X.L., Tessonnier, J.P., 2023. An effective strategy to produce highly amenable cellulose and enhance lignin upgrading to aromatic and olefinic hydrocarbons. Energy Environ. Sci. 16, 97-112.
    [53]
    Shen, X.J., Zhang, C.F., Han, B.X., Wang, F., 2022. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chem. Soc. Rev. 51, 1608-1628.
    [54]
    Shi, N., Liu, D., Huang, Q., Guo, Z.S., Jiang, R.X., Wang, F., Chen, Q.T., Li, M., Shen, G.B., Wen, F.S., 2019. Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture. Bioresour. Technol. 283, 174-183.
    [55]
    Shin, H.Y., Jo, S.M., Kim, S.S., 2022. Oxidative depolymerization of kraft lignin assisted by potassium tert-butoxide and its effect on color and UV absorption. Ind. Crops Prod. 187, 115539.
    [56]
    Singh, K., Mehra, S., Kumar, A., 2022. Metal-based ionic liquids: effective catalysts in aqueous media for the selective production of vanillin from alkali lignin at room temperature. Green Chem. 24, 9629-9642.
    [57]
    Subbotina, E., Rukkijakan, T., Marquez-Medina, M.D., Yu, X.W., Johnsson, M., Samec, J.S.M., 2021. Oxidative cleavage of C-C bonds in lignin. Nat. Chem. 13, 1118-1125.
    [58]
    Sudarsanam, P., Zhong, R.Y., Van den Bosch, S., Coman, S.M., Parvulescu, V.I., Sels, B.F., 2018. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 47, 8349-8402.
    [59]
    Sun, L.G., Ye, X.H., Cao, Z.W., Zhang, C.Y., Yao, C., Ni, C.Y., Li, X.Z., 2022. Upconversion enhanced photocatalytic conversion of lignin biomass into valuable product over CeVO4/palygorskite nanocomposite: effect of Gd3+ incorporation. Appl. Catal. A 648, 118923.
    [60]
    Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S., Barta, K., 2018. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614-678.
    [61]
    Tan, S.Z., Yu, X.Z., Zhu, L.N., Fu, W.R., Wang, L.Y., 2022. Heterogeneous iron-catalyzed aerobic oxidative cleavage of C-C bonds in alcohols to esters. ACS Sustain. Chem. Eng. 10, 16527-16537.
    [62]
    Tian, Z.P., Liang, X.B., Li, R.X., Wang, C., Liu, J.P., Lei, L.B., Shu, R.Y., Chen, Y., 2022. Hydrodeoxygenation of guaiacol as a model compound of pyrolysis lignin-oil over NiCo bimetallic catalyst: reactivity and kinetic study. Fuel 308, 122034.
    [63]
    Wang, H.Y., Giardino, G.J., Chen, R., Yang, C.J., Niu, J., Wang, D.W., 2023a. Photocatalytic depolymerization of native lignin toward chemically recyclable polymer networks. ACS Cent. Sci. 9, 48-55.
    [64]
    Wang, L.G., He, M., Liu, X.W., Zhai, L.J., Niu, L.X., Xue, Z.L., Wu, H.T., 2023b. t-BuOK promoted C-C bond oxidative cleavage of β-O-4 and β-1 lignin models to benzoic acids at room temperature. Green Chem. 25, 550-553.
    [65]
    Wang, L., Yin, J., Jiang, J.G., Zhang, Y.F., Song, M.Y., Zhang, R., Dong, Z.G., Yang, H.P., Yu, H.B., 2022a. Revealing G-lignin model compounds pyrolysis behavior: β-O-4 and 5-5’ dimer and trimer. Fuel 317, 123531.
    [66]
    Wang, N., Xue, R., Yang, N., Sun, H., Zhang, B.Y., Ma, Z.M., Ma, Y.Q., Zang, L.H., 2022b. Efficient oxidative cleavage of lignin C-C model compound using MOF-derived Cobalt/Nickel sulfide heterostructures. J. Alloys Compd. 929, 167324.
    [67]
    Wang, W.L., Liu, Y.C., Wang, Y., Liu, L.F., Hu, C.W., 2022c. The influence of solvent on the pyrolysis of organosolv lignins extracted from willow. Energy Convers. Manag. X 13, 100139.
    [68]
    Wang, X.T., Chu, S., Shao, J.J., Liu, C., Luo, Z.C., Xiao, R., Zhang, H.Y., 2022d. Efficient and selective C-C bond cleavage of a lignin model using a polyimide photocatalyst with high photooxidation capability. ACS Sustain. Chem. Eng. 10, 11555-11566.
    [69]
    Wang, Y.L., He, J.H., Zhang, Y.T., 2020. CeCl3-promoted simultaneous photocatalytic cleavage and amination of Cα-Cβ bond in lignin model compounds and native lignin. CCS Chem. 2, 107-117.
    [70]
    Wang, Y.L., Liu, Y., He, J.H., Zhang, Y.T., 2019. Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. Sci. Bull. 64, 1658-1666.
    [71]
    Wu, X.J., Lin, J.C., Zhang, H.Z., Xie, S.J., Zhang, Q.H., Sels, B.F., Wang, Y., 2021a. Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C-C bonds under simulated solar light. Green Chem. 23, 10071-10078.
    [72]
    Wu, X.J., Xie, S.J., Zhang, H.K., Zhang, Q.H., Sels, B.F., Wang, Y., 2021b. Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33, e2007129.
    [73]
    Wu, X.J., Fan, X.T., Xie, S.J., Lin, J.C., Cheng, J., Zhang, Q.H., Chen, L.Y., Wang, Y., 2018. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 1, 772-780.
    [74]
    Xie, B., Tobimatsu, Y., Kamitakahara, H., Takano, T., 2022. Reaction selectivity in electro-oxidation of lignin dimer model compounds and synthetic lignin with different mediators for the laccase mediator system (PZH, NHPI, ABTS). ACS Sustain. Chem. Eng. 10, 6633-6641.
    [75]
    Xu, J., Shi, J.S., Wang, J.Y., Zhang, L.H., Wang, Y.J., 2022a. Photocatalyst g-C3N4 for efficient cleavage of lignin C-C bonds in micellar aqueous medium. Mol. Catal. 530, 112598.
    [76]
    Xu, J.K., Zhou, P.F., Zhang, C.T., Yuan, L., Xiao, X., Dai, L., Huo, K.F., 2022b. Striding the threshold of photocatalytic lignin-first biorefining via a bottom-up approach: from model compounds to realistic lignin. Green Chem. 24, 5351-5378.
    [77]
    Xu, X.W., Li, P.H., Zhong, Y.D., Yu, J.D., Miao, C., Tong, G.L., 2023. Review on the oxidative catalysis methods of converting lignin into vanillin. Int. J. Biol. Macromol. 243, 125203.
    [78]
    Xu, Y.H., Li, M.F., 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour. Technol. 342, 126035.
    [79]
    Ye, K., Liu, Y., Wu, S.B., Zhuang, J.P., 2021. A review for lignin valorization: challenges and perspectives in catalytic hydrogenolysis. Ind. Crops Prod. 172, 114008.
    [80]
    Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552-3599.
    [81]
    Zhai, Y.X., Li, C., Xu, G.Y., Ma, Y.F., Liu, X.H., Zhang, Y., 2017. Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon. Green Chem. 19, 1895-1903.
    [82]
    Zhang, B., Guo, T.L., Li, Z.W., Kühn, F.E., Lei, M., Zhao, Z.K., Xiao, J.L., Zhang, J., Xu, D.Z., Zhang, T., Li, C.Z., 2022a. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat. Commun. 13, 3365.
    [83]
    Zhang, B., Li, J., Guo, L., Chen, Z.P., Li, C., 2018. Photothermally promoted cleavage of β-1, 4-glycosidic bonds of cellulosic biomass on Ir/HY catalyst under mild conditions. Appl. Catal. B 237, 660-664.
    [84]
    Zhang, B.K., Li, W.Z., Li, X., 2022b. Selective production of lignin-derived monomers from corn stover by tuning the acid and hydrogenation sites of aluminum phosphate catalysts. Ind. Crops Prod. 178, 114608.
    [85]
    Zhang, C.F., Wang, F., 2021. Catalytic cleavage of lignin C-O and C-C bonds. Catalysis in Biomass Conversion. Amsterdam: Elsevier, 175-218.
    [86]
    Zhang, H.C., Liu, Y., Fu, S.Y., Deng, Y.L., 2021. Selective hydrodeoxygenation of lignin model compound (3, 4-dimethoxybenzyl alcohol) by Pd/CNx catalyst. Int. J. Biol. Macromol. 169, 274-281.
    [87]
    Zhang, H.C., Yi, Z.D., Fu, S.Y., Li, C.Z., Lucia, L.A., Liu, Q.Y., 2023a. Pd nanocubes supported on SiW12 @Co-ZIF Nanosheets for High-efficiency rupture of ether bonds in model and actual lignin. Appl. Catal. B 322, 122128.
    [88]
    Zhang, Q.Q., Gupta, N.K., Rose, M., Gu, X.L., Menezes, P.W., Chen, Z.P., 2023b. Mechanistic insights into the photocatalytic valorization of lignin models via C-O/C-C cleavage or C-C/C-N coupling. Chem Catal. 3, 100470.
    [89]
    Zhang, X., Li, W.Z., Wang, J.D., Zhang, B.K., Guo, G., Shen, C.C., Jiang, Y.H., 2022c. Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst. Fuel 323, 124428.
    [90]
    Zhang, Y.M., Yue, H.J., Zou, J., Yao, R.J., Duan, W.Y., Ma, H., Zhao, Y.Z., He, Z.M., 2023c. Oxidative lignin depolymerization using metal supported hydrotalcite catalysts: effects of process parameters on phenolic compounds distribution. Fuel 331, 125805.
    [91]
    Zheng, Q.Q., Zhang, D.Q., Fu, P., Wang, A.X., Sun, Y.M., Li, Z.Y., Fan, Q.W., 2022. Insight into the fast pyrolysis of lignin: unraveling the role of volatile evolving and char structural evolution. Chem. Eng. J. 437, 135316.
    [92]
    Zhou, H., Chen, L., Guo, Y., Liu, X.H., Wu, X.P., Gong, X.Q., Wang, Y.Q., 2022. Hydrogenolysis cleavage of the Csp2-Csp3 bond over a metal-free NbOPO4 catalyst. ACS Catal. 12, 4806-4812.
    [93]
    Zhou, Y.F., Slater, T.J.A., Luo, X.L., Shen, Y., 2023. A versatile single-copper-atom electrocatalyst for biomass valorization. Appl. Catal. B 324, 122218.
    [94]
    Zhou, Z.Y., Liu, D.H., Zhao, X.B., 2021. Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 146, 111169.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return