Volume 9 Issue 3
Aug.  2024
Turn off MathJax
Article Contents
Nissa Nurfajrin Solihat, Alif Faturahman Hidayat, R.A. Ilyas, Senthil Muthu Kumar Thiagamani, Nur Izyan Wan Azeele, Fahriya Puspita Sari, Maya Ismayati, Mohammad Irfan Bakshi, Zaharaddeen N. Garba, M. Hazwan Hussin, Witta Kartika Restu, Wasrin Syafii, Harits Atika Ariyanta, Widya Fatriasari. Recent antibacterial agents from biomass derivatives: Characteristics and applications[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 283-309. doi: 10.1016/j.jobab.2024.02.002
Citation: Nissa Nurfajrin Solihat, Alif Faturahman Hidayat, R.A. Ilyas, Senthil Muthu Kumar Thiagamani, Nur Izyan Wan Azeele, Fahriya Puspita Sari, Maya Ismayati, Mohammad Irfan Bakshi, Zaharaddeen N. Garba, M. Hazwan Hussin, Witta Kartika Restu, Wasrin Syafii, Harits Atika Ariyanta, Widya Fatriasari. Recent antibacterial agents from biomass derivatives: Characteristics and applications[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 283-309. doi: 10.1016/j.jobab.2024.02.002

Recent antibacterial agents from biomass derivatives: Characteristics and applications

doi: 10.1016/j.jobab.2024.02.002
More Information
  • Corresponding author: E-mail address: niss001@brin.go.id (N.N. Solihat)
  • Available Online: 2024-02-09
  • Publish Date: 2024-07-05
  • Enhancing awareness of personal cleanliness and antibacterial resistance has intensified the antibacterial substance request on consumable products. Antibacterial agents that have been commercialized nowadays are produced from inorganic and non-renewable substances. This provides several drawbacks, particularly against health and environmental issues. Therefore, many scientists work on substituting fossil-fuel-based antibacterial agents with natural ones such as from biomass. Biomass derivatives, natural abundances of biopolymers in the world, amount to major compounds including polysaccharides (cellulose, hemicellulose, and chitosan) and polyphenol (tannin and lignin) substances which are capable to combat the growth of Gram-positive bacteria and Gram-negative bacteria. To date, no report focuses on a deep understanding of antibacterial properties derived from biomass and the internal and external factors effects. This work provides that gap because comprehensive knowledge is necessary before applying biomass to the products. The potency of biomass derivatives as antibacterial additives is also summarized. Basic knowledge of antibacterial characteristics to the application in products is highlighted in this review. Besides, the discussion about challenges and future perspectives is also delivered.

     

  • Declaration of Competing Interest
    The authors declare no conflict of interest.
  • loading
  • Abdel-Gawad, K.M., Hifney, A.F., Fawzy, M.A., Gomaa, M., 2017. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 63, 593–601. doi: 10.1016/j.foodhyd.2016.10.001|39|1|343|2018|||
    Abo-elmaaty, S., El Dougdoug, N.K., Hazaa, M.M., 2016. Improved antibacterial efficacy of bacteriophage-cosmetic formulation for treatment of Staphylococcus aureus in vitro. Ann. Agric. Sci. 61, 201–206. doi: 10.1016/j.aoas.2016.08.002
    Adeola, F.O., 2021. Global impact of chemicals and toxic substances on human health and the environment. Handbook of Global Health. Cham: Springer International Publishing, 2227–2256. doi: 10.1007/978-3-030-45009-0_96
    Afrin, F., Ahsan, T., Mondal, M.N., Rasul, M.G., Afrin, M., Silva, A.A., Yuan, C., Shah, A.K.M.A., 2023. Evaluation of antioxidant and antibacterial activities of some selected seaweeds from Saint Martin's Island of Bangladesh. Food Chem. Adv. 3, 100393. doi: 10.1016/j.focha.2023.100393
    Aguilar-Toalá, J.E., Hernández-Mendoza, A., González-Córdova, A.F., Vallejo-Cordoba, B., Liceaga, A.M., 2019. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 122, 170170. doi: 10.1016/j.peptides.2019.170170
    Ahmad, N., Tayyeb, D., Ali, I., K Alruwaili, N., Ahmad, W., Rehman, A.U., Khan, A.H., Iqbal, M.S., 2020. Development and characterization of hemicellulose-based films for antibacterial wound-dressing application. Polymers 12, 548. doi: 10.3390/polym12030548
    Alfonsi, E., Lange, H., Zongo, L., Poce, G., Sgarzi, M., Crestini, C., 2023. Tannin microcapsules for synergy-enhanced sunscreen formulations. Ind. Crops Prod. 192, 116105. doi: 10.1016/j.indcrop.2022.116105
    Ali, A., Chen, Y., Liu, H.S., Yu, L., Baloch, Z., Khalid, S., Zhu, J., Chen, L., 2019. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 129, 1120–1126. doi: 10.1016/j.ijbiomac.2018.09.068
    Ali, A., Hasan, A., Negi, Y.S., 2022. Effect of carbon based fillers on xylan/chitosan/nano-HAp composite matrix for bone tissue engineering application. Int. J. Biol. Macromol. 197, 1–11. doi: 10.1016/j.ijbiomac.2021.12.012
    Alqahtani, M.S., Alqahtani, A., Al-Thabit, A., Roni, M., Syed, R., 2019. Novel lignin nanoparticles for oral drug delivery. J. Mater. Chem. B 7, 4461–4473. doi: 10.1039/c9tb00594c
    Alzagameem, A., Klein, S.E., Bergs, M., Do, X.T., Korte, I., Dohlen, S., Hüwe, C., Kreyenschmidt, J., Kamm, B., Larkins, M., Schulze, M., 2019. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers 11, 670. doi: 10.3390/polym11040670
    Amor, G., Sabbah, M., Caputo, L., Idbella, M., De Feo, V., Porta, R., Fechtali, T., Mauriello, G., 2021. Basil essential oil: composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging. Foods 10, 121. doi: 10.3390/foods10010121
    Aranaz, I., Alcántara, A.R., Civera, M.C., Arias, C., Elorza, B., Heras Caballero, A., Acosta, N., 2021. Chitosan: an overview of its properties and applications. Polymers 13, 3256. doi: 10.3390/polym13193256
    Arellano-Sandoval, L., Delgado, E., Camacho-Villegas, T.A., Bravo-Madrigal, J., Manriquez-González, R., Lugo-Fabres, P.H., Toriz, G., García-Uriostegui, L., 2020. Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity. MRS Commun. 10, 147–154. doi: 10.1557/mrc.2019.165
    Ariyanta, H.A., Santoso, E.B., Suryanegara, L., Arung, E.T., Kusuma, I.W., Azman Mohammad Taib, M.N., Hussin, M.H., Yanuar, Y., Batubara, I., Fatriasari, W., 2023a. Recent Progress on the Development of lignin as future ingredient biobased cosmetics. Sustain. Chem. Pharm. 32, 100966. doi: 10.1016/j.scp.2022.100966
    Ariyanta, H.A., Sari, F.P., Sohail, A., Restu, W.K., Septiyanti, M., Aryana, N., Fatriasari, W., Kumar, A., 2023b. Current roles of lignin for the agroindustry: applications, challenges, and opportunities. Int. J. Biol. Macromol. 240, 124523. doi: 10.1016/j.ijbiomac.2023.124523
    Arung, E.T., Kusuma, I.W., Paramita, S., Amen, Y., Kim, Y.U., Naibaho, N.M., Ramadhan, R., Ariyanta, H.A., Fatriasari, W., Shimizu, K., 2023. Antioxidant, anti-inflammatory and anti-acne activities of stingless bee (Tetragonula biroi) propolis. Fitoterapia 164, 105375. doi: 10.1016/j.fitote.2022.105375
    Bajwa, D.S., Pourhashem, G., Ullah, A.H., Bajwa, S.G., 2019. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 139, 111526. doi: 10.1016/j.indcrop.2019.111526
    Bao, Y.H., He, J., Song, K., Guo, J., Zhou, X.W., Liu, S.M., 2022. Functionalization and antibacterial applications of cellulose-based composite hydrogels. Polymers 14, 769. doi: 10.3390/polym14040769
    Bhushan, S., Kumar, A., Singh, N., Sheikh, J., 2020. Functionalization of wool fabric using lignin biomolecules extracted from groundnut shells. Int. J. Biol. Macromol. 142, 559–563. doi: 10.1016/j.ijbiomac.2019.09.130
    Bhutiya, P.L., Mahajan, M.S., Abdul Rasheed, M., Pandey, M., Zaheer Hasan, S., Misra, N., 2018a. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity. Int. J. Biol. Macromol. 112, 1264–1271. doi: 10.1016/j.ijbiomac.2018.02.108
    Bhutiya, P.L., Misra, N., Abdul Rasheed, M., Zaheer Hasan, S., 2018b. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity. Int. J. Biol. Macromol. 117, 435–444. doi: 10.1016/j.ijbiomac.2018.05.210
    Blessy Rebecca, P.N., Durgalakshmi, D., Balakumar, S., Rakkesh, R.A., 2022. Biomass-derived graphene-based nanocomposites: a futuristic material for biomedical applications. ChemistrySelect 7, e202104013. doi: 10.1002/slct.202104013
    Boisvert, C., Beaulieu, L., Bonnet, C., Pelletier, É., 2015. Assessment of the antioxidant and antibacterial activities of three species of edible seaweeds. J. Food Biochem. 39, 377–387. doi: 10.1111/jfbc.12146
    Bose, I., Roy, S., Pandey, V.K., Singh, R., 2023. A comprehensive review on significance and advancements of antimicrobial agents in biodegradable food packaging. Antibiotics 12, 968. doi: 10.3390/antibiotics12060968
    Bouaziz, F., Koubaa, M., Ellouz Ghorbel, R., Ellouz Chaabouni, S., 2017. Biological properties of water-soluble polysaccharides and hemicelluloses from almond gum. Int. J. Biol. Macromol. 95, 667–674. doi: 10.1016/j.ijbiomac.2016.11.104
    Breilly, D., Fadlallah, S., Froidevaux, V., Colas, A., Allais, F., 2021. Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Constr. Build. Mater. 301, 124065. doi: 10.1016/j.conbuildmat.2021.124065
    Brun, N., Hesemann, P., Esposito, D., 2017. Expanding the biomass derived chemical space. Chem. Sci. 8, 4724–4738. doi: 10.1039/C7SC00936D
    Bu, Y.M., Zhang, S.Y., Cai, Y.J., Yang, Y.Y., Ma, S.T., Huang, J.J., Yang, H.J., Ye, D.Z., Zhou, Y.S., Xu, W.L., Gu, S.J., 2018. Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles. Cellulose 26, 2109–2122.
    Bush, J.R., Liang, H.X., Dickinson, M., Botchwey, E.A., 2016. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym. Adv. Technol. 27, 1050–1055. doi: 10.1002/pat.3767
    Cao, L.C., Yu, I.K.M., Liu, Y.Y., Ruan, X.X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S.C., 2018. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour. Technol. 269, 465–475. doi: 10.1016/j.biortech.2018.08.065
    Cass, C.A.P., Burg, K.J.L., 2012. Tannic acid cross-linked collagen scaffolds and their anti-cancer potential in a tissue engineered breast implant. J. Biomater. Sci. Polym. Ed. 23, 281–298. doi: 10.1163/092050610X550331
    Chang, A.K.T., Frias, R.R., Alvarez, L.V., Bigol, U.G., Guzman, J.P.M.D., 2019. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 17, 189–195. doi: 10.1016/j.bcab.2018.11.016
    Chaubey, A., Aadil, K.R., Jha, H., 2020. Synthesis and characterization of lignin-poly lactic acid film as active food packaging material. Mater. Technol. 36, 585–593.
    Chen, J., Liao, C.L., Ouyang, X., Kahramanoğlu, I., Gan, Y.D., Li, M.X., 2020. Antimicrobial activity of pomegranate peel and its applications on food preservation. J. Food Qual. 2020, 8850339.
    Chen, K., Yuan, S.R., Li, J.Z., Zhang, Y., Chen, F.F., Qi, D.M., 2022a. Fabrication of flower-like Ag/lignin composites and application in antibacterial fabrics. Int. J. Biol. Macromol. 222, 783–793. doi: 10.1016/j.ijbiomac.2022.09.198
    Chen, K., Yuan, S.R., Wang, D., Qi, D.M., Chen, F.F., Qiu, X.Q., 2021. Curcumin-loaded high internal phase emulsions stabilized with lysine modified lignin: a biological agent with high photothermal protection and antibacterial properties. Food Funct. 12, 7469–7479. doi: 10.1039/d1fo00128k
    Chen, M.L., Yan, X.R., Cheng, M., Zhao, P.X., Wang, Y.R., Zhang, R.F., Wang, X.Y., Wang, J., Chen, M.M., 2022b. Preparation, characterization and application of poly(lactic acid)/corn starch/eucalyptus leaf essential oil microencapsulated active bilayer degradable film. Int. J. Biol. Macromol. 195, 264–273. doi: 10.1016/j.ijbiomac.2021.12.023
    Chen, W.C., Chien, H.W., 2022. Enhancing the antibacterial property of chitosan through synergistic alkylation and chlorination. Int. J. Biol. Macromol. 217, 321–329. doi: 10.1016/j.ijbiomac.2022.07.079
    Cheng, K., 2021. Wood tannins: structure, production, and analysis. In: Cheng, K., Hagiopol, C. (Eds. ). Natural Polyphenols from Wood. Amsterdam: Elsevier, 85–121. doi: 10.1504/ijsnet.2021.10039028
    Chetouani, A., Follain, N., Marais, S., Rihouey, C., Elkolli, M., Bounekhel, M., Benachour, D., Le Cerf, D., 2017. Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int. J. Biol. Macromol. 97, 348–356. doi: 10.1016/j.ijbiomac.2017.01.018
    Chourmouziadi Laleni, N., Gomes, P.C., Gkatzionis, K., Spyropoulos, F., 2021. Propolis particles incorporated in aqueous formulations with enhanced antibacterial performance. Food Hydrocoll. Health 1, 100040. doi: 10.1016/j.fhfh.2021.100040
    Chung, K.T., Lu, Z., Chou, M.W., 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36, 1053–1060. doi: 10.1016/S0278-6915(98)00086-6
    Coma, V., Freire, C.S.R., Silvestre, A.J.D., 2015. Recent advances on the development of antibacterial polysaccharide-based materials. In: Ramawat, K.G., Mérillon, J.M. (Eds. ). Polysaccharides. Cham: Springer, 1751–1803. doi: 10.1007/978-3-319-16298-0_12
    Cosmetics-Europe, 2019. Socio-Economic Contribution of the European Cosmetics Industry. Available at: https://cosmeticseurope.eu/files/4715/6023/8405/Socio-Economic_Contribution_of_the_European_Cosmetics_Industry_Report_2019.pdf
    Črešnar, K.P., Zamboulis, A., Bikiaris, D.N., Aulova, A., Zemljič, L.F., 2022. Kraft lignin/tannin as a potential accelerator of antioxidant and antibacterial properties in an active thermoplastic polyester-based multifunctional material. Polymers 14, 1532. doi: 10.3390/polym14081532
    da Costa, R.C., Daitx, T.S., Mauler, R.S., da Silva, N.M., Miotto, M., Crespo, J.S., Carli, L.N., 2020. Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packag. Shelf Life 26, 100602. doi: 10.1016/j.fpsl.2020.100602
    da Cruz, J.A., da Silva, A.B., Ramin, B.B.S., Souza, P.R., Popat, K.C., Zola, R.S., Kipper, M.J., Martins, A.F., 2020. Poly(vinyl alcohol)/cationic tannin blend films with antioxidant and antimicrobial activities. Mater. Sci. Eng. C Mater. Biol. Appl. 107, 110357. doi: 10.1016/j.msec.2019.110357
    Davidson, P.M., Critzer, F.J., Taylor, T.M., 2013. Naturally occurring antimicrobials for minimally processed foods. Annu. Rev. Food Sci. Technol. 4, 163–190. doi: 10.1146/annurev-food-030212-182535
    de Queiroz Antonino, R.S.C.M., Lia Fook, B.R.P., de Oliveira Lima, V.A., de Farias Rached, R. Í., Lima, E.P.N., da Silva Lima, R.J., Peniche Covas, C.A., Lia Fook, M.V., 2017. Preparation and characterization of chitosan obtained from shells of shrimp (litopenaeus vannamei Boone). Mar. Drugs 15, 141. doi: 10.3390/md15050141
    de Sousa Nascimento, L., da Mata Vieira, F.I.D., Horácio, V., Marques, F.P., Rosa, M.F., Souza, S.A., de Freitas, R.M., Uchoa, D.E.A., Mazzeto, S.E., Lomonaco, D., Avelino, F., 2021. Tailored organosolv banana peels lignins: improved thermal, antioxidant and antimicrobial performances by controlling process parameters. Int. J. Biol. Macromol. 181, 241–252. doi: 10.1016/j.ijbiomac.2021.03.156
    Devi, T.B., Mohanta, D., Ahmaruzzaman, M., 2019. Biomass derived activated carbon loaded silver nanoparticles: an effective nanocomposites for enhanced solar photocatalysis and antimicrobial activities. J. Ind. Eng. Chem. 76, 160–172. doi: 10.1016/j.jiec.2019.03.032
    Dhat, S., Naik, S.R., Agharkar, A., Kulkarni, P., 2009. Vitamin E loaded pectin alginate microspheres for cosmetic application. J. Pharm. Res. 2, 1098–1102.
    Divya, K., Vijayan, S., George, T.K., Jisha, M.S., 2017. Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibres. Polym. 18, 221–230. doi: 10.1007/s12221-017-6690-1
    Dumont, M., Villet, R., Guirand, M., Montembault, A., Delair, T., Lack, S., Barikosky, M., Crepet, A., Alcouffe, P., Laurent, F., David, L., 2018. Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr. Polym. 190, 31–42. doi: 10.1016/j.carbpol.2017.11.088
    El-Nemr, K.F., Mohamed, H.R., Ali, M.A., Fathy, R.M., Dhmees, A.S., 2019. Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int. J. Environ. Anal. Chem. 100, 1578–1602.
    El-Saber Batiha, G., Hussein, D.E., Algammal, A.M., George, T.T., Jeandet, P., Al-Snafi, A.E., Tiwari, A., Pagnossa, J.P., Lima, C.M., Thorat, N.D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H.F., Cruz-Martins, N., 2021. Application of natural antimicrobials in food preservation: recent views. Food Contr. 126, 108066. doi: 10.1016/j.foodcont.2021.108066
    Fernandes, E.M., Pires, R.A., Mano, J.F., Reis, R.L., 2013. Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog. Polym. Sci. 38, 1415–1441. doi: 10.1016/j.progpolymsci.2013.05.013
    Fernandéz, J.R., Rouzard, K., Voronkov, M., Huber, K.L., Stock, J.B., Stock, M., Gordon, J.S., Pérez, E., 2016. Anti-inflammatory and anti-bacterial properties of SIG1273: a skin protecting cosmetic functional ingredient. J. Dermatol. Sci. 84, e19.
    Fu, G.Q., Zhang, S.C., Chen, G.G., Hao, X., Bian, J., Peng, F., 2020. Xylan-based hydrogels for potential skin care application. Int. J. Biol. Macromol. 158, 244–250. doi: 10.1016/j.ijbiomac.2020.04.235
    Fundador, N.G.V., Enomoto-Rogers, Y., Takemura, A., Iwata, T., 2012. Acetylation and characterization of xylan from hardwood kraft pulp. Carbohydr. Polym. 87, 170–176. doi: 10.1016/j.carbpol.2011.07.034
    Soltani Firouz, M., Mohi-Alden, K., Omid, M., 2021. A critical review on intelligent and active packaging in the food industry: research and development. Food Res. Int. 141, 110113. doi: 10.1016/j.foodres.2021.110113
    Freitas, F.M.C., Cerqueira, M.A., Gonçalves, C., Azinheiro, S., Garrido-Maestu, A., Vicente, A.A., Pastrana, L.M., Teixeira, J.A., Michelin, M., 2020. Green synthesis of lignin nano- and micro-particles: physicochemical characterization, bioactive properties and cytotoxicity assessment. Int. J. Biol. Macromol. 163, 1798–1809. doi: 10.1016/j.ijbiomac.2020.09.110
    Ge, W.J., Cao, S., Shen, F., Wang, Y.Y., Ren, J.L., Wang, X.H., 2019. Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohydr. Polym. 224, 115147. doi: 10.1016/j.carbpol.2019.115147
    Gerbin, E., Rivière, G.N., Foulon, L., Frapart, Y.M., Cottyn, B., Pernes, M., Marcuello, C., Godon, B., Gainvors-Claisse, A., Crônier, D., Majira, A., Österberg, M., Kurek, B., Baumberger, S., Aguié-Béghin, V., 2021. Tuning the functional properties of lignocellulosic films by controlling the molecular and supramolecular structure of lignin. Int. J. Biol. Macromol. 181, 136–149. doi: 10.1016/j.ijbiomac.2021.03.081
    Grand View Research, 2022. Lignin Market Size, Share & Trends Analysis Report by Product (Ligno-Sulphonates, Kraft, Organosolv), By Application (Macromolecule, Aromatic), By Region, And Segment Forecasts, 2023-2030. Available at: https://www.grandviewresearch.com/industry-analysis/lignin-market.
    Guarnieri, A., Triunfo, M., Scieuzo, C., Ianniciello, D., Tafi, E., Hahn, T., Zibek, S., Salvia, R., De Bonis, A., Falabella, P., 2022. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci. Rep. 12, 8084. doi: 10.1038/s41598-022-12150-3
    Guo, Y.J., Tian, D., Shen, F., Yang, G., Long, L.L., He, J.S., Song, C., Zhang, J., Zhu, Y., Huang, C.R., Deng, S.H., 2019. Transparent cellulose/technical lignin composite films for advanced packaging. Polymers 11, 1455. doi: 10.3390/polym11091455
    Gyawali, R., Ibrahim, S.A., 2014. Natural products as antimicrobial agents. Food Contr. 46, 412–429. doi: 10.1016/j.foodcont.2014.05.047
    He, X.Y., Luzi, F., Hao, X.L., Yang, W.J., Torre, L., Xiao, Z.F., Xie, Y.J., Puglia, D., 2019. Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles. Int. J. Biol. Macromol. 127, 665–676. doi: 10.1016/j.ijbiomac.2019.01.202
    Hidayat, A.F., Solihat, N.N., Zulfiana, D., Anita, S.H., Oktaviani, M., Ismayati, M., Fatriasari, W., Syafii, W., 2023. Solvent effect on revealing antibacterial potency of lignin and tannin from Acacia mangium and Acacia crasicarpa. In: Lubis, M.A.R. (Ed. ). The 2nd International Conference of Lignocellulose (ICON-LIG). Bogor: AIP Conference Proceedings.
    Hidayati, S., Fonny Budiyanto, E., Saputra, H., Hadi, S., Heri Iswanto, A., Nurfajrin Solihat, N., Antov, P., Hua, L.S., Fatriasari, W., Sapuan Salit, M., 2023. Characterization of formacell lignin derived from black liquor as a potential green additive for advanced biocomposites. J. Renew. Mater. 11, 2865–2879. doi: 10.32604/jrm.2023.027579
    Hongrattanavichit, I., Aht-Ong, D., 2021. Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Ind. Crops Prod. 171, 113858. doi: 10.1016/j.indcrop.2021.113858
    Hu, X.Q., Ye, D.Z., Tang, J.B., Zhang, L.J., Zhang, X., 2016. From waste to functional additives: thermal stabilization and toughening of PVA with lignin. RSC Adv. 6, 13797–13802. doi: 10.1039/C5RA26385A
    Huang, Q.Q., Liu, X.L., Zhao, G.Q., Hu, T.M., Wang, Y.X., 2018. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 4, 137–150. doi: 10.1016/j.aninu.2017.09.004
    Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z.B., Ni, Y.H., 2022. Sources, production and commercial applications of fungal chitosan: a review. J. Bioresour. Bioprod. 7, 85–98.
    Jabborova, D., Davranov, K., Egamberdieva, D., 2019. Antibacterial, antifungal, and antiviral properties of medical plants. Medically Important Plant Biomes: Source of Secondary Metabolites. Singapore: Springer, 51-65. doi: 10.1007/978-981-13-9566-6_3
    Jaganathan, G., Manivannan, K., Lakshmanan, S., Sithique, M.A., 2018. Fabrication and characterization of Artocarpus heterophyllus waste derived lignin added chitosan biocomposites for wound dressing application. Sustain. Chem. Pharm. 10, 27–32. doi: 10.1016/j.scp.2018.08.002
    Janarthanan, M., Senthil Kumar, M., 2018. Extraction of alginate from brown seaweeds and evolution of bioactive alginate film coated textile fabrics for wound healing application. J. Ind. Text. 49, 328–351.
    Jardine, A., Sayed, S., 2018. Valorisation of chitinous biomass for antimicrobial applications. Pure Appl. Chem. 90, 293–304. doi: 10.1515/pac-2017-0707
    Jayakumar, A., Radoor, S., Kim, J.T., Rhim, J.W., Parameswaranpillai, J., Siengchin, S., 2022. Lignin-based bionanocomposites for food packaging applications. Bionanocomposites for Food Packaging Applications. Amsterdam: Elsevier, 323–337.
    Kaczmarek, B., 2020. Tannic acid with antiviral and antibacterial activity as A promising component of biomaterials-a minireview. Materials 13, 3224. doi: 10.3390/ma13143224
    Kaczmarek, M.B., Struszczyk-Swita, K., Li, X.K., Szczęsna-Antczak, M., Daroch, M., 2019. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front. Bioeng. Biotechnol. 7, 243. doi: 10.3389/fbioe.2019.00243
    Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., Loh, X.J., 2016. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200. doi: 10.1039/C5GC02616D
    Kanatt, S.R., 2020. Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packag. Shelf Life 24, 100506. doi: 10.1016/j.fpsl.2020.100506
    Kanmani, P., Rhim, J., 2014. Nano and nanocomposite antimicrobial materials for food packaging applications. Prog. Nanomater. Food Packag., 34–48. doi: 10.4155/ebo.13.303
    Kapetanakou, A.E., Skandamis, P.N., 2016. Applications of active packaging for increasing microbial stability in foods: natural volatile antimicrobial compounds. Curr. Opin. Food Sci. 12, 1–12. doi: 10.1016/j.cofs.2016.06.001
    Kapil, S., Mankoo, R.K., Dudeja, I., Singh, A., Kaur, J., 2022. Structural, antioxidant, antibacterial and biodegradation properties of rice straw xylan (native and modified) based biofilms. Int. J. Food Sci. Technol. 58, 2772–2781.
    Karimah, A., Ridho, M.R., Munawar, S.S., Ismadi Amin, Y., Damayanti, R., Lubis, M.A.R., Wulandari, A.P., Nurindah Iswanto, A.H., Fudholi, A., Asrofi, M., Saedah, E., Sari, N.H., Pratama, B.R., Fatriasari, W., Nawawi, D.S., Rangappa, S.M., Siengchin, S., 2021. A comprehensive review on natural fibers: technological and socio-economical aspects. Polymers 13, 4280. doi: 10.3390/polym13244280
    Kaur, R., Thakur, N.S., Chandna, S., Bhaumik, J., 2020. Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents. J. Mater. Chem. B 8, 260–269. doi: 10.1039/c9tb01569h
    Khalid, S., Yu, L., Feng, M.Y., Meng, L.H., Bai, Y.T., Ali, A., Liu, H.S., Chen, L., 2018. Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag. Shelf Life 18, 71–79. doi: 10.1016/j.fpsl.2018.08.008
    Khanbabaee, K., van Ree, T., 2001. Tannins: classification and definition. Nat. Prod. Rep. 18, 641–649. doi: 10.1039/b101061l
    Koc, B., Akyuz, L., Cakmak, Y.S., Sargin, I., Salaberria, A.M., Labidi, J., Ilk, S., Cekic, F.O., Akata, I., Kaya, M., 2020. Production and characterization of chitosan-fungal extract films. Food Biosci. 35, 100545. doi: 10.1016/j.fbio.2020.100545
    Konuk Takma, D., Korel, F., 2019. Active packaging films as a carrier of black cumin essential oil: development and effect on quality and shelf-life of chicken breast meat. Food Packag. Shelf Life 19, 210–217. doi: 10.1016/j.fpsl.2018.11.002
    Kozlowska, J., Prus, W., Stachowiak, N., 2019. Microparticles based on natural and synthetic polymers for cosmetic applications. Int. J. Biol. Macromol. 129, 952–956. doi: 10.1016/j.ijbiomac.2019.02.091
    Kumar Das, A., Islam, M.N., Faruk, M.O., Ashaduzzaman, M., Dungani, R., Rosamah, E., Hartati, S., Rumidatul, A., 2019. Hardwood tannin: sources, utilizations, and prospects. In: Aires, A., (Ed). Tannins - Structural Properties, Biological Properties and Current Knowledge. London: IntechOpen.
    Kumar, R., Butreddy, A., Kommineni, N., Reddy, P.G., Bunekar, N., Sarkar, C., Dutt, S., Mishra, V.K., Aadil, K.R., Mishra, Y.K., Oupicky, D., Kaushik, A., 2021. Lignin: drug/gene delivery and tissue engineering applications. Int. J. Nanomed. 16, 2419–2441. doi: 10.2147/ijn.s303462
    Kumaresan, M., Vijai Anand, K., Govindaraju, K., Tamilselvan, S., Ganesh Kumar, V., 2018. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog. 124, 311–315. doi: 10.1016/j.micpath.2018.08.060
    Lee, S.J., Gwak, M.A., Chathuranga, K., Lee, J.S., Koo, J., Park, W.H., 2023. Multifunctional chitosan/tannic acid composite films with improved anti-UV, antioxidant, and antimicrobial properties for active food packaging. Food Hydrocoll. 136, 108249. doi: 10.1016/j.foodhyd.2022.108249
    Leite, L.S.F., Pham, C., Bilatto, S., Azeredo, H.M.C., Cranston, E.D., Moreira, F.K., Mattoso, L.H.C., Bras, J., 2021. Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films. ACS Sustain. Chem. Eng. 9, 8539–8549. doi: 10.1021/acssuschemeng.1c01774
    Li, H., Liu, C., Sun, J.R., Lv, S.S., 2022. Bioactive edible sodium alginate films incorporated with tannic acid as antimicrobial and antioxidative food packaging. Foods 11, 3044. doi: 10.3390/foods11193044
    Liu, H., Wang, C.Y., Li, C., Qin, Y.G., Wang, Z.H., Yang, F., Li, Z.H., Wang, J.C., 2018a. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 8, 7533–7549. doi: 10.1039/c7ra13510f
    Liu, R., Dai, L., Zou, Z.F., Si, C.L., 2018 bal. Drug-loaded poly(L-lactide)/lignin stereo complex film for enhancing stability and sustained release of trans-resveratrol. Int. J. Biol. Macromol. 119, 1129–1136. doi: 10.1016/j.ijbiomac.2018.08.040
    Lizundia, E., Armentano, I., Luzi, F., Bertoglio, F., Restivo, E., Visai, L., Torre, L., Puglia, D., 2020. Synergic effect of nanolignin and metal oxide nanoparticles into poly(l-lactide) bionanocomposites: material properties, antioxidant activity, and antibacterial performance. ACS Appl. Bio Mater. 3, 5263–5274. doi: 10.1021/acsabm.0c00637
    Lobo, F.C.M., Franco, A.R., Fernandes, E.M., Reis, R.L., 2021. An overview of the antimicrobial properties of lignocellulosic materials. Molecules 26, 1749. doi: 10.3390/molecules26061749
    Ma, H.P., Qin, W.B., Guo, B., Li, P.X., 2022. Effect of plant tannin and glycerol on thermoplastic starch: mechanical, structural, antimicrobial and biodegradable properties. Carbohydr. Polym. 295, 119869. doi: 10.1016/j.carbpol.2022.119869
    Maisanaba, S., Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Pichardo, S., Puerto, M., Prieto, A.I., Jos, A., Cameán, A.M., 2017. New advances in active packaging incorporated with essential oils or their main components for food preservation. Food Rev. Int. 33, 447–515. doi: 10.1080/87559129.2016.1175010
    Maldonado-Carmona, N., Marchand, G., Villandier, N., Ouk, T.S., Pereira, M.M., Calvete, M.J.F., Calliste, C.A., Żak, A., Piksa, M., Pawlik, K.J., Matczyszyn, K., Leroy-Lhez, S., 2020. Porphyrin-loaded lignin nanoparticles against bacteria: a photodynamic antimicrobial chemotherapy application. Front. Microbiol. 11, 606185. doi: 10.3389/fmicb.2020.606185
    Marinho, C.O., Vianna, T.C., Cecci, R.R.R., Marangoni, L. Jr, Alves, R.M.V., Vieira, R.P., 2022. Effect of water kefir grain biomass on chitosan film properties. Mater. Today Commun. 32, 103902. doi: 10.1016/j.mtcomm.2022.103902
    Meftahi, A., Samyn, P., Geravand, S.A., Khajavi, R., Alibkhshi, S., Bechelany, M., Barhoum, A., 2022. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications. Carbohydr. Polym. 278, 118956. doi: 10.1016/j.carbpol.2021.118956
    Melandri, D., De Angelis, A., Orioli, R., Ponzielli, G., Lualdi, P., Giarratana, N., Reiner, V., 2006. Use of a new hemicellulose dressing (Veloderm®) for the treatment of split-thickness skin graft donor sites. Burns 32, 964–972. doi: 10.1016/j.burns.2006.03.013
    Moreirinha, C., Vilela, C., Silva, N.H.C.S., Pinto, R.J.B., Almeida, A., Rocha, M.A.M., Coelho, E., Coimbra, M.A., Silvestre, A.J.D., Freire, C.S.R., 2020. Antioxidant and antimicrobial films based on brewers spent grain Arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocoll. 108, 105836. doi: 10.1016/j.foodhyd.2020.105836
    Morin-Crini, N., Lichtfouse, E., Torri, G., Crini, G., 2019. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 17, 1667–1692. doi: 10.1007/s10311-019-00904-x
    Mousavi Khaneghah, A., Hashemi, S.M.B., Limbo, S., 2018. Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod. Process. 111, 1–19. doi: 10.1016/j.fbp.2018.05.001
    Mulchandani, R., Wang, Y., Gilbert, M., Van Boeckel, T.P., 2023. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLoS Glob. Public Health 3, e0001305. doi: 10.1371/journal.pgph.0001305
    Mun, J.S., Pe, J.A., Mun, S.P., 2021. Chemical characterization of kraft lignin prepared from mixed hardwoods. Molecules 26, 4861. doi: 10.3390/molecules26164861
    Nada, A.M.A., El-Diwany, A.I., Elshafei, A.M. 2004. Infrared and antimicrobial studies on different lignins. Acta Biotechnol., 9, 295–298.
    Narasimhan, A.M., Ravikumar, A., Nambiar, S., Punnoose, A.M., Jayaraman, M., Balaji Raghavendran, H.R., 2023. Marine seaweed polysaccharides in tissue engineering. In: Dominguez, H., Pereira, L., Kraan, S. (Eds. ). Functional Ingredients from Algae for Foods and Nutraceuticals. Amsterdam: Elsevier, 519-551.
    Nechita, P., Roman Iana Roman, M., Năstac, S.M., 2023. Green approaches on modification of xylan hemicellulose to enhance the functional properties for food packaging materials-a review. Polymers 15, 2088. doi: 10.3390/polym15092088
    Nemeş, N.S., Ardean, C., Davidescu, C.M., Negrea, A., Ciopec, M., Duţeanu, N., Negrea, P., Paul, C., Duda-Seiman, D., Muntean, D., 2022. Antimicrobial activity of cellulose based materials. Polymers 14, 735. doi: 10.3390/polym14040735
    Ndaba, B., Roopnarain, A., Daramola, M.O., Adeleke, R., 2020. Influence of extraction methods on antimicrobial activities of lignin-based materials: a review. Sustain. Chem. Pharm. 18, 100342. doi: 10.1016/j.scp.2020.100342
    Nur Hanani, Z.A., Yee, F.C., Nor-Khaizura, M.A.R., 2019. Effect of pomegranate (Punica granatum L. ) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 89, 253–259. doi: 10.1016/j.foodhyd.2018.10.007
    Obiang-Obounou, B.W., Ryu, G.H., 2013. The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts. Food Chem. 141, 4166–4170. doi: 10.1016/j.foodchem.2013.06.129
    Olchowik-Grabarek, E., Sekowski, S., Bitiucki, M., Dobrzynska, I., Shlyonsky, V., Ionov, M., Burzynski, P., Roszkowska, A., Swiecicka, I., Abdulladjanova, N., Zamaraeva, M., 2020. Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: structure-related activity study. Sci. Rep. 10, 11168. doi: 10.1038/s41598-020-68030-1
    Oliveira, A.L.S., Gondim, S., Gómez-García, R., Ribeiro, T., Pintado, M., 2021. Olive leaf phenolic extract from two Portuguese cultivars–bioactivities for potential food and cosmetic application. J. Environ. Chem. Eng. 9, 106175. doi: 10.1016/j.jece.2021.106175
    Onyszko, M., Markowska-Szczupak, A., Rakoczy, R., Paszkiewicz, O., Janusz, J., Gorgon-Kuza, A., Wenelska, K., Mijowska, E., 2022. The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Sci. Rep. 12, 1321. doi: 10.1038/s41598-022-05458-7
    Orejuela-Escobar, L.M., Landázuri, A.C., Goodell, B., 2021. Second generation biorefining in Ecuador: circular bioeconomy, zero waste technology, environment and sustainable development: the nexus. J. Bioresour. Bioprod. 6, 83–107. doi: 10.1016/j.jobab.2021.01.004
    Pal, S., Nisi, R., Stoppa, M., Licciulli, A., 2017. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2, 3632–3639. doi: 10.1021/acsomega.7b00442
    Pandey, A.K., Kumar, P., Singh, P., Tripathi, N.N., Bajpai, V.K., 2017. Essential oils: sources of antimicrobials and food preservatives. Front. Microbiol. 7, 2161.
    Park, H.H., Park, S., Ko, G., Woo, K., 2013. Magnetic hybrid colloids decorated with Ag nanoparticles bite away bacteria and chemisorb viruses. J. Mater. Chem. B 1, 2701–2709. doi: 10.1039/c3tb20311e
    Park, S.B., Lih, E., Park, K.S., Joung, Y.K., Han, D.K., 2017. Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 68, 77–105. doi: 10.1016/j.progpolymsci.2016.12.003
    Patra, J.K., Das, G., Baek, K.H., 2015. Chemical composition and antioxidant and antibacterial activities of an essential oil extracted from an edible seaweed, Laminaria Japonica L. Mol. 20, 12093–12113. doi: 10.3390/molecules200712093
    Pellis, A., Guebitz, G.M., Nyanhongo, G.S., 2022. Chitosan: sources, processing and modification techniques. Gels 8, 393. doi: 10.3390/gels8070393
    Pizzi, A., 2008. Tannins: major sources, properties and applications. In: Belgacem, M.N., Gandini, A. (Eds. ). Monomers, Polymers and Composites from Renewable Resources. Amsterdam: Elsevier, 179–199.
    Roy Maulik, S., Chakraborty, L., Pandit, P., 2021. Evaluation of cellulosic and protein fibers for coloring and functional finishing properties using simultaneous method with Eucalyptus bark extract as a natural dye. Fibres. Polym. 22, 711–719. doi: 10.1007/s12221-021-0092-0
    Purwanti, T., Solihat, N.N., Fatriasari, W., Nawawi, D.S., 2021. Natural and synthetic antimicrobials agent for textile: a review. J. Ind. Hasil Perkebunan 17, 33–48.
    Putri, A.S., Haqiqi, M.T., Supomo, S., Kusuma, I.W., Kuspradini, H., Rosamah, E., Amirta, R., Paramita, S., Ramadhan, R., Lubis, M.A.R., Ariyanta, H.A., Aswandi, A., Kholibrina, C.R., Ismayati, M., Fatriasari, W., Tarmadi, D., Yuliansyah, Y., Suwinarti, W., Kim, Y.U., Arung, E.T., 2022. A mini review: the application of Eupatorium plants as potential cosmetic ingredients. Cosmetics 9, 103. doi: 10.3390/cosmetics9050103
    Pyla, R., Kim, T.J., Silva, J.L., Jung, Y.S., 2010. Enhanced antimicrobial activity of starch-based film impregnated with thermally processed tannic acid, a strong antioxidant. Int. J. Food Microbiol. 137, 154–160. doi: 10.1016/j.ijfoodmicro.2009.12.011
    Queirós, L.C.C., Sousa, S.C.L., Duarte, A.F.S., Domingues, F.C., Ramos, A.M.M., 2017. Development of carboxymethyl xylan films with functional properties. J. Food Sci. Technol. 54, 9–17. doi: 10.1007/s13197-016-2389-3
    Radhika, D., Chockalingam, V., R, Priya, 2012. Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian J Pharm. Clin. Res. 5, 89–90.
    Ragab, T.I.M., Shalaby, A.S.G., El Awdan, S.A., Refaat, A., Helmy, W.A., 2018. New applied pharmacological approach/trend on utilization of agro-industrial wastes. Environ. Sci. Pollut. Res. Int. 25, 26446–26460. doi: 10.1007/s11356-018-2631-9
    Rajaboopathi, S., Thambidurai, S., 2018. Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles. J. Photochem. Photobiol. B 183, 75–87. doi: 10.1016/j.jphotobiol.2018.04.028
    Rajeshkumar, S., Nandhini, N.T., Manjunath, K., Sivaperumal, P., Krishna Prasad, G., Alotaibi, S.S., Roopan, S.M., 2021. Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract. J. Mol. Struct. 1242, 130724. doi: 10.1016/j.molstruc.2021.130724
    Rajeswari, A., Christy, E.J.S., Swathi, E., Pius, A., 2020. Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environ. Chem. Ecotoxicol. 2, 107–114. doi: 10.1016/j.enceco.2020.07.003
    Ranganath, A.S., Sarkar, A.K., 2014. Evaluation of durability to laundering of triclosan and chitosan on a textile substrate. J. Text. 812303.
    Rani, K., 2020. Utilizing natural colorants of brown seaweeds in bioactive fabric dyeing. J. Weed Sci. Res. 27, 403–414. doi: 10.28941/pjwsr.v26i4.860
    Ravishankar, K., Venkatesan, M., Desingh, R.P., Mahalingam, A., Sadhasivam, B., Subramaniyam, R., Dhamodharan, R., 2019. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 447–457. doi: 10.1016/j.msec.2019.04.038
    Reesi, F., Minaiyan, M., Taheri, A., 2018. A novel lignin-based nanofibrous dressing containing arginine for wound-healing applications. Drug Deliv. Transl. Res. 8, 111–122. doi: 10.1007/s13346-017-0441-0
    Ribeiro-Santos, R., Andrade, M., Sanches-Silva, A., 2017. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr. Opin. Food Sci. 14, 78–84. doi: 10.1016/j.cofs.2017.01.012
    Ridho, M.R., Agustiany, E.A., Rahmi Dn, M., Madyaratri, E.W., Ghozali, M., Restu, W.K., Falah, F., Rahandi Lubis, M.A., Syamani, F.A., Nurhamiyah, Y., Hidayati, S., Sohail, A., Karungamye, P., Nawawi, D.S., Iswanto, A.H., Othman, N., Mohamad Aini, N.A., Hussin, M.H., Sahakaro, K., Hayeemasae, N., Ali, M.Q., Fatriasari, W., 2022. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv. Mater. Sci. Eng. 2022, 1363481.
    Riofrio, A., Alcivar, T., Baykara, H., 2021. Environmental and economic viability of chitosan production in guayas-ecuador: a robust investment and life cycle analysis. ACS Omega 6, 23038–23051. doi: 10.1021/acsomega.1c01672
    Rizal, S., Abdul Khalil, H.P.S., Abd Hamid, S., Yahya, E.B., Ikramullah, I., Kurniawan, R., Hazwan, C.M., 2023. Cinnamon-nanoparticle-loaded macroalgal nanocomposite film for antibacterial food packaging applications. Nanomaterials 13, 560. doi: 10.3390/nano13030560
    Rodrigues, C.G., Ferreira, P.R.B., Mendes, C.S.O., Reis-Jr, R., Valerio, H.M., Brandi, I.V., de Oliveira, D.A., 2014. Antibacterial activity of tannins from Psidium guineense Sw. (Myrtaceae). J. Med. Plants Res. 8, 1095–1100. doi: 10.5897/JMPR2014.5500
    Saedi, S., Kim, J.T., Shokri, M., Kim, J.H., Shin, G.H., 2023. Green seaweed (Ulva ohnoi) as a new eco-friendly source for preparing transparent and functional regenerated cellulose composite films. Cellulose 30, 3041–3059. doi: 10.1007/s10570-023-05055-5
    Sahoo, S., Misra, M., Mohanty, A.K., 2011. Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos- A: Appl. Sci. 42, 1710–1718. doi: 10.1016/j.compositesa.2011.07.025
    Salam, A., Pawlak, J.J., Venditti, R.A., El-tahlawy, K., 2011. Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18, 1033–1041. doi: 10.1007/s10570-011-9542-y
    Salmieri, S., Islam, F., Khan, R.A., Hossain, F.M., Ibrahim, H.M.M., Miao, C.W., Hamad, W.Y., Lacroix, M., 2014. Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 21, 4271–4285. doi: 10.1007/s10570-014-0406-0
    Scandorieiro, S., Teixeira, F.M.M.B., Nogueira, M.C.L., Panagio, L.A., de Oliveira, A.G., Durán, N., Nakazato, G., Kobayashi, R.K.T., 2023. Antibiofilm effect of biogenic silver nanoparticles combined with oregano derivatives against carbapenem-resistant Klebsiella pneumoniae. Antibiotics 12, 756. doi: 10.3390/antibiotics12040756
    Seenivasan, R., Rekha, M., Indu, H., Geetha, S., 2012. Antibacterial activity and phytochemical analysis of selected seaweeds from mandapam coast, India. J. Appl. Pharm. Sci. 2, 159–169.
    Sebastian, J., Rouissi, T., Brar, S.K., Hegde, K., Verma, M., 2019. Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydr. Polym. 219, 431–440. doi: 10.1016/j.carbpol.2019.05.047
    Selvasudha, N., Goswami, R., Tamil Mani Subi, M., Rajesh, S., Kishore, K., Vasanthi, H.R., 2023. Seaweeds derived ulvan and alginate polysaccharides encapsulated microbeads–Alternate for plastic microbeads in exfoliating cosmetic products. Carbohydr. Polym. Technol. Appl. 6, 100342.
    Sharma, S., Barkauskaite, S., Duffy, B., Jaiswal, A.K., Jaiswal, S., 2020. Characterization and antimicrobial activity of biodegradable active packaging enriched with clove and thyme essential oil for food packaging application. Foods 9, 1117. doi: 10.3390/foods9081117
    Singh, S., Gaikwad, K.K., Lee, Y.S., 2018. Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int. J. Biol. Macromol. 107, 1879–1887. doi: 10.1016/j.ijbiomac.2017.10.057
    Sionkowska, A., Michalska-Sionkowska, M., Walczak, M., 2020. Preparation and characterization of collagen/hyaluronic acid/chitosan film crosslinked with dialdehyde starch. Int. J. Biol. Macromol. 149, 290–295. doi: 10.1016/j.ijbiomac.2020.01.262
    Sirviö, J.A., Ismail, M.Y., Zhang, K.T., Tejesvi, M.V., Ämmälä, A., 2020. Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. J. Mater. Chem. A 8, 7935–7946. doi: 10.1039/c9ta13182e
    Souza, A.G., Ferreira, R.R., Paula, L.C., Mitra, S.K., Rosa, D.S., 2021. Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag. Shelf Life 27, 100615. doi: 10.1016/j.fpsl.2020.100615
    Štumpf, S., Hostnik, G., Primožič, M., Leitgeb, M., Salminen, J.P., Bren, U., 2020. The effect of growth medium strength on minimum inhibitory concentrations of tannins and tannin extracts against E. Coli. Molecules 25, 2947. doi: 10.3390/molecules25122947
    Su, X.W., Liu, X.G., Wang, S.Y., Li, B., Pan, T.W., Liu, D.R., Wang, F., Diao, Y.P., Li, K., 2017. Wound-healing promoting effect of total tannins from Entada phaseoloides (L. ) Merr. in rats. Burns 43, 830–838. doi: 10.1016/j.burns.2016.10.010
    Subbuvel, M., Kavan, P., 2022. Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications. Int. J. Biol. Macromol. 194, 470–483. doi: 10.1016/j.ijbiomac.2021.11.090
    Sugiarto, S., Leow, Y., Tan, C.L., Wang, G., Kai, D., 2022. How far is lignin from being a biomedical material? Bioact. Mater. 8, 71–94.
    Sunthornvarabhas, J., Liengprayoon, S., Suwonsichon, T., 2017. Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product. Ind. Crops Prod. 109, 857–861. doi: 10.1016/j.indcrop.2017.09.059
    Suresh, M., Renugadevi, B., Brammavidhya, S., Iyapparaj, P., Anantharaman, P., 2015. Antibacterial activity of red pigment produced by Halolactibacillus alkaliphilus MSRD1: an isolate from seaweed. Appl. Biochem. Biotechnol. 176, 185–195. doi: 10.1007/s12010-015-1566-6
    Tang, W.F., Zhang, A.Z., Cheng, Y.W., Dessie, W., Liao, Y.H., Chen, H.F., Qin, Z.D., Wang, X., Jin, X.D., 2023. Fabrication and application of chitosan-based biomass composites with fire safety, water treatment and antibacterial properties. Int. J. Biol. Macromol. 225, 266–276. doi: 10.1016/j.ijbiomac.2022.10.261
    Tarassoli, Z., Najjar, R., Amani, A., 2021. Formulation and optimization of lemon balm extract loaded azelaic acid-chitosan nanoparticles for antibacterial applications. J. Drug Deliv. Sci. Technol. 65, 102687. doi: 10.1016/j.jddst.2021.102687
    Tavares, L.B., Ito, N.M., Salvadori, M.C., dos Santos, D.J., Rosa, D.S., 2018. PBAT/kraft lignin blend in flexible laminated food packaging: peeling resistance and thermal degradability. Polym. Test. 67, 169–176. doi: 10.1016/j.polymertesting.2018.03.004
    Tayel, A.A., Ibrahim, S.I.A., Al-Saman, M.A., Moussa, S.H., 2014. Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat. Int. J. Biol. Macromol. 69, 471–475. doi: 10.1016/j.ijbiomac.2014.05.072
    Tayel, A.A., Moussa, S.H., El-Tras, W.F., Elguindy, N.M., Opwis, K., 2011. Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste. Int. J. Biol. Macromol. 49, 241–245. doi: 10.1016/j.ijbiomac.2011.04.023
    Thakur, B.R., Singh, R.K., Handa, A.K., 1997. Chemistry and uses of pectin: a review. Crit. Rev. Food Sci. Nutr. 37, 47–73. doi: 10.1080/10408399709527767
    Thombare, N., Jha, U., Mishra, S., Siddiqui, M.Z., 2016. Guar gum as a promising starting material for diverse applications: a review. Int. J. Biol. Macromol. 88, 361–372. doi: 10.1016/j.ijbiomac.2016.04.001
    Transparency-Market-Research, 2020. Antimicrobial ingredients market: high demand for antibacterial agents to drive market growth through 2026. Available at: https://www.biospace.com/article/antimicrobial-ingredients-market-high-demand-for-antibacterial-agents-to-drive-market-growth-through-2026/.
    Tummino, M.L., Laurenti, E., Bracco, P., Cecone, C., La Parola, V., Vineis, C., Testa, M.L., 2023. Antibacterial properties of functionalized cellulose extracted from deproteinized soybean hulls. Cellulose 30, 7805–7824. doi: 10.1007/s10570-023-05339-w
    Ugartondo, V., Mitjans, M., Vinardell, M.P., 2008. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 99, 6683–6687. doi: 10.1016/j.biortech.2007.11.038
    Vasyliev, G., Lyudmyla, K., Hladun, K., Skiba, M., Vorobyova, V., 2022. Valorization of tomato pomace: extraction of value-added components by deep eutectic solvents and their application in the formulation of cosmetic emulsions. Biomass Convers. Biorefin. 12, 95–111. doi: 10.1007/s13399-022-02337-z
    Vaz, J.M., Taketa, T.B., Hernandez-Montelongo, J., Chevallier, P., Cotta, M.A., Mantovani, D., Beppu, M.M., 2018. Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Appl. Surf. Sci. 445, 478–487. doi: 10.1016/j.apsusc.2018.03.110
    Venugopal, J., Rajeswari, R., Shayanti, M., Sridhar, R., Sundarrajan, S., Balamurugan, R., Ramakrishna, S., 2013. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1325–1331. doi: 10.1016/j.msec.2012.12.032
    Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Nilsen-Nygaard, J., Pettersen, M.K., Freire, C.S.R., 2018. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 80, 212–222. doi: 10.1016/j.tifs.2018.08.006
    Vikneshan, M., Saravanakumar, R., Mangaiyarkarasi, R., Rajeshkumar, S., Samuel, S.R., Suganya, M., Baskar, G., 2020. Algal biomass as a source for novel oral nano-antimicrobial agent. Saudi J. Biol. Sci. 27, 3753–3758. doi: 10.1016/j.sjbs.2020.08.022
    Villanueva, X., Zhen, L.L., Ares, J.N., Vackier, T., Lange, H., Crestini, C., Steenackers, H.P., 2022. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front. Microbiol. 13, 987164.
    Vu, T.T., Kim, H., Tran, V.K., Vu, H.D., Hoang, T.X., Han, J.W., Choi, Y.H., Jang, K.S., Choi, G.J., Kim, J.C., 2017. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS One 12, e0181499. doi: 10.1371/journal.pone.0181499
    Wang, Y.L., Li, Z.X., Yang, D.J., Qiu, X.Q., Xie, Y.X., Zhang, X., 2021. Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect. J. Colloid Interface Sci. 583, 80–88. doi: 10.1016/j.jcis.2020.09.027
    Wei, M.P., Qiu, J.D., Li, L., Xie, Y.F., Yu, H., Guo, Y.H., Yao, W.R., 2021. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction. J. Ethnopharmacol. 268, 113552. doi: 10.1016/j.jep.2020.113552
    Wolny-Koładka, K., Malina, D., Suder, A., Pluta, K., Wzorek, Z., 2022. Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity. Processes 10, 389. doi: 10.3390/pr10020389
    Wu, S.P., Du, Y.M., Hu, Y.Z., Shi, X.W., Zhang, L.N., 2013. Antioxidant and antimicrobial activity of xylan-chitooligomer-zinc complex. Food Chem. 138, 1312–1319. doi: 10.1016/j.foodchem.2012.10.118
    Xu, C., Liu, L.Y., Renneckar, S., Jiang, F., 2021. Chemically and physically crosslinked lignin hydrogels with antifouling and antimicrobial properties. Ind. Crops Prod. 170, 113759–113769. doi: 10.1016/j.indcrop.2021.113759
    Xu, F.H., Weng, B.C., Gilkerson, R., Materon, L.A., Lozano, K., 2015. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr. Polym. 115, 16–24. doi: 10.1016/j.carbpol.2014.08.081100747
    Xu, G.B., Luo, Y.C., Song, T., He, B., Chang, M.M., Ren, J.L., 2020. Preparation and application of a xylan-based antibacterial papermaking additive to protect against Escherichia coli bacteria. BioResources 15, 4781–4801. doi: 10.15376/biores.15.3.4781-4801
    Yan, D.Z., Li, Y.Z., Liu, Y.L., Li, N., Zhang, X., Yan, C., 2021. Antimicrobial properties of chitosan and chitosan derivatives in the treatment of enteric infections. Molecules 26, 7136. doi: 10.3390/molecules26237136
    Yang, T.T., Guan, J.P., Tang, R.C., Chen, G.Q., 2018. Condensed tannin from Dioscorea cirrhosa tuber as an eco-friendly and durable flame retardant for silk textile. Ind. Crops Prod. 115, 16–25. doi: 10.1016/j.indcrop.2018.02.018
    Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G.M., Kenny, J.M., Puglia, D., 2016. Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur. Polym. J. 79, 1–12. doi: 10.1109/TSMC.2016.2616490
    Yuan, Y., Xue, Q.R., Guo, Q.Y., Wang, G.Y., Yan, S.X., Wu, Y.T., Li, L., Zhang, X., Li, B., 2021. The covalent crosslinking of dialdehyde glucomannan and the inclusion of tannic acid synergistically improved physicochemical and functional properties of gelatin films. Food Packag. Shelf Life 30, 100747. doi: 10.1016/j.fpsl.2021.100747
    Yun, J.Y., Wei, L., Li, W., Gong, D.Q., Qin, H.Y., Feng, X.J., Li, G.J., Ling, Z., Wang, P., Yin, B.S., 2021. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotechnol. 9, 683796. doi: 10.3389/fbioe.2021.683796
    Yurdasiper, A., Şahiner, A., Gökçe, E.H., 2022. Preparation of thermoresponsive triclosan poly (N-isopropylacrylamide) nanogels and evaluation of antibacterial efficacy on Cutibacterium acnes. J. Drug Deliv. Sci. Technol. 76, 103734. doi: 10.1016/j.jddst.2022.103734
    Zamora Zamora, H.D., Olayiwola, H.O., Jacobus, A.P., Gross, J., Tyhoda, L., Brienzo, M., 2022. Hemicelluloses role in biorefinery systems of cellulosic bioethanol, particleboard, and pulp and paper industries. In: Brienzo, M. (Ed. ). Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy. Singapore: Springer, 2022, 1–37.
    Zhang, S.J., Lin, L.H., Huang, X.H., Lu, Y.G., Zheng, D.L., Feng, Y., 2022. Antimicrobial properties of metal nanoparticles and their oxide materials and their applications in oral biology. J. Nanomater. 2022, 2063265. doi: 10.1155/2022/2063265
    Zhang, W., Yang, Z.Y., Tang, R.C., Guan, J.P., Qiao, Y.F., 2020. Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk. J. Clean. Prod. 250, 119545. doi: 10.1016/j.jclepro.2019.119545
    Zhou, X.W., Li, W.J., Mabon, R., Broadbelt, L.J., 2016. A critical review on hemicellulose pyrolysis. Energy Technol. 5, 52–79. doi: 10.1080/14786419.2015.1033623
    Zhou, Y., Han, Y.M., Li, G.Y., Yang, S., Xiong, F.Q., Chu, F.X., 2019. Preparation of targeted lignin-based hollow nanoparticles for the delivery of doxorubicin. Nanomaterials 9, 188. doi: 10.3390/nano9020188
    Zhu, L.F., Li, J.S., Mai, J., Chang, M.W., 2019. Ultrasound-assisted synthesis of chitosan from fungal precursors for biomedical applications. Chem. Eng. J. 357, 498–507. doi: 10.1016/j.cej.2018.09.183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(9)

    Article Metrics

    Article views (320) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return