Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Hye Jee Kang, Yeon Ju Lee, Jin Kyoung Lee, Irnia Nurika, Sri Suhartini, Deokyeong Choe, Dong Hyun Kim, Hoon Choi, Natasha P. Murphy, Ho Yong Kim, Young Hoon Jung. Production of chitosan-based composite film reinforced with lignin-rich lignocellulose nanofibers from rice husk[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 174-184. doi: 10.1016/j.jobab.2024.03.002
Citation: Hye Jee Kang, Yeon Ju Lee, Jin Kyoung Lee, Irnia Nurika, Sri Suhartini, Deokyeong Choe, Dong Hyun Kim, Hoon Choi, Natasha P. Murphy, Ho Yong Kim, Young Hoon Jung. Production of chitosan-based composite film reinforced with lignin-rich lignocellulose nanofibers from rice husk[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 174-184. doi: 10.1016/j.jobab.2024.03.002

Production of chitosan-based composite film reinforced with lignin-rich lignocellulose nanofibers from rice husk

doi: 10.1016/j.jobab.2024.03.002

No. 2020R1C1C1005251).

This work was supported by the Technology Development Program funded by the Ministry of SMEs and Startups (MSS, Korea) [S2978549]. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by Korea government (Ministry of Science and ICT, MSIT

  • Publish Date: 2024-03-15
  • Lignocellulosic nanofibers (LCNFs), implying lignin-containing cellulose fibers, maintain the properties of both lignin and cellulose, which are hydrophobic and hydrophilic, respectively. The presence of hydrophobic lignin in LCNFs is expected to be an economical and attractive option that can improve the thermal and mechanical properties of polymers. Thus, this study was conducted to produce lignin-rich LCNFs from sugar-rich waste obtained from rice husks after acidic pretreatment. The LCNFs were produced from the lignin-rich solid fractions obtained after pretreatment and enzymatic hydrolysis, which were then incorporated as an additive into a chitosan-based film. The variations in lignin content in the range of approximately 50.6%–66.8% in differently obtained LCNFs gave significantly different optical strengths and mechanical properties. These controllable processes may allow for customized film formation. Additionally, the glucose-rich liquid fractions obtained after pretreatment and enzymatic hydrolysis were used as a substrate for ethanol fermentation to achieve total utilization of rice husk biomass waste. In conclusion, the lignin-rich biomass fraction holds promise as a suitable material for chitosan-LCNF film and has the potential to increase the economic feasibility of the biomaterial industry.


  • loading
  • [1]
    Banerjee, S., Sen, R., Pandey, R.A., Chakrabarti, T., Satpute, D., Giri, B.S., Mudliar, S., 2009. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33, 1680-1686.
    Behera, K., Kumari, M., Chang, Y.H., Chiu, F.C., 2021. Chitosan/boron nitride nanobiocomposite films with improved properties for active food packaging applications. Int. J. Biol. Macromol. 186, 135-144.
    Bhatia, S.K., Jagtap, S.S., Bedekar, A.A., Bhatia, R.K., Rajendran, K., Pugazhendhi, A., Rao, C.V., Atabani, A.E., Kumar, G., Yang, Y.H., 2021. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci. Total Environ. 765, 144429.
    Bian, H.Y., Chen, L.H., Dai, H.Q., Zhu, J.Y., 2017. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr. Polym. 167, 167-176.
    Chen, L., Tang, C.Y., Ning, N.Y., Wang, C.Y., Fu, Q., Zhang, Q., 2009. Preparation and properties of chitosan/lignin composite films. Chin. J. Polym. Sci. 27, 739.
    Chen, Y., Fan, D.B., Han, Y.M., Lyu, S.Y., Lu, Y., Li, G.Y., Jiang, F., Wang, S.Q., 2018. Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose 25, 6421-6431.
    Cherubini, F., 2010. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy. Convers. Manag. 51, 1412-1421.
    Chieng, S., Kuan, S.H., 2022. Harnessing bioenergy and high value-added products from rice residues: a review. Biomass Convers. Biorefin. 12, 3547-3571.
    Crouvisier-Urion, K., Bodart, P.R., Winckler, P., Raya, J., Gougeon, R.D., Cayot, P., Domenek, S., Debeaufort, F., Karbowiak, T., 2016. Biobased composite films from chitosan and lignin: antioxidant activity related to structure and moisture. ACS Sustainable Chem. Eng. 4, 6371-6381.
    Dagnino, E.P., Felissia, F.E., Chamorro, E., Area, M.C., 2017. Optimization of the soda-ethanol delignification stage for a rice husk biorefinery. Ind. Crops Prod. 97, 156-165.
    Das, S., Goud, V.V., 2021. RSM-optimised slow pyrolysis of rice husk for bio-oil production and its upgradation. Energy 225, 120161.
    Ehman, N.V., Lourenço, A.F., McDonagh, B.H., Vallejos, M.E., Felissia, F.E., Ferreira, P.J.T., Chinga-Carrasco, G., Area, M.C., 2020. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers. Int. J. Biol. Macromol. 143, 453-461.
    Elhussieny, A., Faisal, M., D'Angelo, G., Aboulkhair, N.T., Everitt, N.M., Fahim, I.S., 2020. Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Eng. J. 11, 1219-1226.
    Fernandes, S.C.M., Freire, C.S.R., Silvestre, A.J.D., Pascoal Neto, C., Gandini, A., Berglund, L.A., Salmén, L., 2010. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr. Polym. 81, 394-401.
    Hamdi, M., Nasri, R., Li, S.M., Nasri, M., 2019. Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: biological potential and structural, thermal, and mechanical characterization. Food Hydrocoll. 89, 802-812.
    Han, X.S., Bi, R., Oguzlu, H., Takada, M., Jiang, J.G., Jiang, F., Bao, J., Saddler, J.N., 2020. Potential to produce sugars and lignin-containing cellulose nanofibrils from enzymatically hydrolyzed chemi-thermomechanical pulps. ACS Sustainable Chem. Eng. 8, 14955-14963.
    Haqiqi, M.T., Bankeeree, W., Lotrakul, P., Pattananuwat, P., Punnapayak, H., Ramadhan, R., Kobayashi, T., Amirta, R., Prasongsuk, S., 2021. Antioxidant and UV-blocking properties of a carboxymethyl cellulose-lignin composite film produced from oil palm empty fruit bunch. ACS Omega 6, 9653-9666.
    Herzele, S., Veigel, S., Liebner, F., Zimmermann, T., Gindl-Altmutter, W., 2016. Reinforcement of polycaprolactone with microfibrillated lignocellulose. Ind. Crops Prod. 93, 302-308.
    Hong, C., Corbett, D., Venditti, R., Jameel, H., Park, S., 2019. Xylooligosaccharides as prebiotics from biomass autohydrolyzate. LWT 111, 703-710.
    Howard, R.L., Abotsi, E., Jansen, V.R.E.L., Howard, S., 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602-619.
    Ibrahim, N.H., Iqbal, A., Mohammad-Noor, N., Razali, R.M., Sreekantan, S., Yanto, D.H.Y., Mahadi, A.H., Wilson, L.D., 2022. Photocatalytic remediation of harmful Alexandrium minutum bloom using hybrid chitosan-modified TiO2 films in seawater: a lab-based study. Catalysts 12, 707.
    Jang, J.H., Kang, H.J., Adedeji, O.E., Kim, G.Y., Lee, J.K., Kim, D.H., Jung, Y.H., 2023. Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber. Food Chem. 403, 134366.
    Jang, J.H., So, B.R., Yeo, H.J., Kang, H.J., Kim, M.J., Lee, J.J., Jung, S.K., Jung, Y.H., 2021. Preparation of cellulose microfibril (CMF) from Gelidium amansii and feasibility of CMF as a cosmetic ingredient. Carbohydr. Polym. 257, 117569.
    Ji, M.C., Li, J.Y., Li, F.Y., Wang, X.J., Man, J., Li, J.F., Zhang, C.W., Peng, S.X., 2022. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydr. Polym. 281, 119078.
    Jiang, F., Hsieh, Y.L., 2016. Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods. ACS Sustainable Chem. Eng. 4, 1041-1049.
    Jiang, Y., Liu, X.Y., Yang, Q., Song, X.P., Qin, C.R., Wang, S.F., Li, K.C., 2018. Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose 25, 6479-6494.
    Jung, H., Kwak, H., Chun, J., Oh, K., 2021. Alkaline fractionation and subsequent production of nano-structured silica and cellulose nano-fibrils for the comprehensive utilization of rice husk. Sustainability 13, 1951.
    Jung, Y., Kim, K., 2015. Pretreatment of Biomass. Available at: https://doi.org/10.1016/B978-0-12-800080-9.00003-7.
    Jung, Y.H., Kim, I.J., Kim, H.K., Kim, K.H., 2013. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour. Technol. 132, 109-114.
    Jung, Y.H., Kim, K.H., 2017. Evaluation of the main inhibitors from lignocellulose pretreatment for enzymatic hydrolysis and yeast fermentation. Bioresources 12, 9348-9356.
    Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., Ralph, J., Tamminen, T., Felby, C., Kruus, K., 2019. Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresour. Technol. 280, 303-312.
    Kim, D.H., Park, H.M., Jung, Y.H., Sukyai, P., Kim, K.H., 2019. Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresour. Technol. 284, 391-397.
    Korbag, I., Mohamed Saleh, S., 2016. Studies on mechanical and biodegradability properties of PVA/lignin blend films. Int. J. Environ. Stud. 73, 18-24.
    Lazzari, L.K., Zimmermann, M.V.G., Perondi, D., Zampieri, V.B., Zattera, A.J., Santana, R.M.C., 2019. Production of carbon foams from rice husk. Mat. Res. 22, https://doi.org/10.1590/1980-5373-MR-2019-0427.
    Liu, K., Du, H.S., Zheng, T., Liu, W., Zhang, M., Liu, H.Y., Zhang, X.Y., Si, C.L., 2021. Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. 23, 9723-9746.
    Ludueña, L., Fasce, D., Alvarez, V.A., Stefani, P.M., 2011. Nanocellulose from rice husk following alkaline treatment to remove silica. Bioresources 6, 1440-1453.
    Ma'ruf, A., Pramudono, B., Aryanti, N., 2017. Lignin isolation process from rice husk by alkaline hydrogen peroxide: lignin and silica extracted. AIP Conference Proceedings. Las Vegas, Nevada, USA.
    Martins, J.T., Cerqueira, M.A., Vicente, A.A., 2012. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll. 27, 220-227.
    Merz, C.R., 2019. Physicochemical and colligative investigation of α (shrimp shell)- and β (squid pen)-chitosan membranes: concentration-gradient-driven water flux and ion transport for salinity gradient power and separation process operations. ACS Omega 4, 21027-21040.
    Qiu, Y.F., Ma, Z., Hu, P.G., 2014. Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2, 13471-13478.
    Ranatunga, T.D., Jervis, J., Helm, R.F., McMillan, J.D., Hatzis, C., 1997. Toxicity of hardwood extractives toward Saccharomyces cerevisiae glucose fermentation. Biotechnol. Lett. 19, 1125-1127.
    Rodionova, M.V., Bozieva, A.M., Zharmukhamedov, S.K., Leong, Y.K., Chi-Wei Lan, J., Veziroglu, A., Veziroglu, T.N., Tomo, T., Chang, J.S., Allakhverdiev, S.I., 2022. A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int. J. Hydrog. Energy 47, 1481-1498.
    Sadeghifar, H., Venditti, R., Jur, J., Gorga, R.E., Pawlak, J.J., 2017. Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustainable Chem. Eng. 5, 625-631.
    Sengupta, P., Mohan, R., Wheeldon, I., Kisailus, D., Wyman, C.E., Cai, C.M., 2022. Prospects of thermotolerant Kluyveromyces marxianus for high solids ethanol fermentation of lignocellulosic biomass. Biotechnol. Biofuels Bioprod. 15, 134.
    Shaheen, S.M., Antoniadis, V., Shahid, M., Yang, Y., Abdelrahman, H., Zhang, T., Hassan, N.E.E., Bibi, I., Niazi, N.K., Younis, S.A., Almazroui, M., Tsang, Y.F., Sarmah, A.K., Kim, K.H., Rinklebe, J., 2022. Sustainable applications of rice feedstock in agro-environmental and construction sectors: a global perspective. Renew. Sustain. Energy Rev. 153, 111791.
    Shankar, S., Reddy, J.P., Rhim, J.W., 2015. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int. J. Biol. Macromol. 81, 267-273.
    Silva, L.E., Dos Santos, A.A., Torres, L., McCaffrey, Z., Klamczynski, A., Glenn, G., Sena Neto, A.R., Wood, D., Williams, T., Orts, W., Damásio, R.A.P., Tonoli, G.H.D., 2021. Redispersion and structural change evaluation of dried microfibrillated cellulose. Carbohydr. Polym. 252, 117165.
    Supanakorn, G., Varatkowpairote, N., Taokaew, S., Phisalaphong, M., 2021. Alginate as dispersing agent for compounding natural rubber with high loading microfibrillated cellulose. Polymers (Basel) 13, 468.
    Terzioglu, P., Altin, Y., Kalemtas, A., Celik Bedeloglu, A., 2020. Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications. J. Polym. Eng. 40, 152-157.
    Trifol, J., Marin Quintero, D.C., Moriana, R., 2021. Pine cone biorefinery: integral valorization of residual biomass into lignocellulose nanofibrils (LCNF)-reinforced composites for packaging. ACS Sustainable Chem. Eng. 9, 2180-2190.
    Walls, L.E., Rios-Solis, L., 2020. Sustainable production of microbial isoprenoid derived advanced biojet fuels using different generation feedstocks: a review. Front. Bioeng. Biotechnol. 8, 599560.
    Wang, Y., Gao, M., 2023. Efficient biorefinery based on designed lignocellulosic substrate for lactic acid production. Fermentation 9, 744.
    Xu, R., Du, H.S., Wang, H., Zhang, M., Wu, M.Y., Liu, C., Yu, G., Zhang, X.Y., Si, C.L., Choi, S.E., Li, B., 2021. Valorization of enzymatic hydrolysis residues from corncob into lignin-containing cellulose nanofibrils and lignin nanoparticles. Front. Bioeng. Biotechnol. 9, 677963.
    Yoo, C.G., Meng, X.Z., Pu, Y.Q., Ragauskas, A.J., 2020. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour. Technol. 301, 122784.
    Yousefhashemi, S.M., Khosravani, A., Yousefi, H., 2019. Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch-nanosilica combination to make paperboard. Cellulose 26, 7207-7221.
    Zhang, L.L., Lu, H.L., Yu, J., McSporran, E., Khan, A., Fan, Y.M., Yang, Y.Q., Wang, Z.G., Ni, Y.H., 2019. Preparation of high-strength sustainable lignocellulose gels and their applications for antiultraviolet weathering and dye removal. ACS Sustainable Chem. Eng. 7, 2998-3009.
    Zhu, J.Y., Sabo, R., Luo, X.L., 2011. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 13, 1339-1344.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (24) PDF downloads(3) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint