Volume 9 Issue 2
May  2024
Turn off MathJax
Article Contents
Zongpu Xu, Fang He, Jing Yu, Zhangze Yang, Yu Zhu, Rong Liao, Ruyin Lyu, Mei Yang, Liangjun Zhu, Mingying Yang. From common biomass materials to high-performance tissue engineering scaffold: Biomimetic preparation, properties characterization, in vitro and in vivo evaluations[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 185-196. doi: 10.1016/j.jobab.2024.03.004
Citation: Zongpu Xu, Fang He, Jing Yu, Zhangze Yang, Yu Zhu, Rong Liao, Ruyin Lyu, Mei Yang, Liangjun Zhu, Mingying Yang. From common biomass materials to high-performance tissue engineering scaffold: Biomimetic preparation, properties characterization, in vitro and in vivo evaluations[J]. Journal of Bioresources and Bioproducts, 2024, 9(2): 185-196. doi: 10.1016/j.jobab.2024.03.004

From common biomass materials to high-performance tissue engineering scaffold: Biomimetic preparation, properties characterization, in vitro and in vivo evaluations

doi: 10.1016/j.jobab.2024.03.004

This work was supported by National Natural Science Foundation of China (No. 52103149), State of Sericulture Industry Technology System (No. CARS-18-ZJ0501), Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province (No. 2020E10025), Zhejiang University start-up fund, and the program “Construction of Mineralized Silk Fibroin Microfiber Reinforced Chitosan Composite Scaffold and its Application in Bone Repair”. Zongpu Xu thanks the undergraduates Guicong Zhang, Zhen He, and Mingzheng Fang from Zhejiang University for their help with experiments.

  • Publish Date: 2024-03-26
  • Converting common biomass materials to high-performance biomedical products could not only reduce the environmental pressure associated with the large-scale use of synthetic materials, but also increase the economic value. Chitosan as a very promising candidate has drawn considerable attention owing to its abundant sources and remarkable bioactivities. However, pure chitosan materials usually exhibit insufficient mechanical properties and excessive swelling ratio, which seriously affected their in vivo stability and integrity when applied as tissue engineering scaffolds. Thus, simultaneously improving the mechanical strength and biological compatibility of pure chitosan (CS) scaffolds becomes very important. Here, inspired by the fiber-reinforced construction of natural extracellular matrix and the porous structure of cancellous bone, we built silk microfibers/chitosan composite scaffolds via ice-templating technique. This biomimetic strategy achieved 500% of mechanical improvement to pure chitosan, and meanwhile still maintaining high porosity (> 87%). In addition, the increased roughness of chitosan pore walls by embedded silk microfibers significantly promoted cell adhesion and proliferation. More importantly, after subcutaneous implantation in mice for four weeks, the composite scaffold showed greater structural integrity, as well as better collagenation, angiogenesis, and osteogenesis abilities, suggesting its great potential in biomedicine.


  • loading
  • [1]
    Ahmad Zamri, M.F.M., Bahru, R., Amin, R., Aslam Khan, M.U., Razak, S.I.A., Abu Hassan, S., Kadir, M.R.A., Nayan, N.H.M., 2021. Waste to health: a review of waste derived materials for tissue engineering. J. Clean. Prod. 290, 125792.
    Ali Soliman, E., Furuta, M., 2014. Influence of phase behavior and miscibility on mechanical, thermal and micro-structure of soluble starch-gelatin thermoplastic biodegradable blend films. Food Nutr. Sci. 5, 1040-1055.
    Bojedla, S.S.R., Chameettachal, S., Yeleswarapu, S., Nikzad, M., Masood, S.H., Pati, F., 2022. Silk fibroin microfiber-reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics. J. Biomed. Mater. Res. A 110, 1386-1400.
    Bou-Francis, A., Piercey, M., Al-Qatami, O., Mazzanti, G., Khattab, R., Ghanem, A., 2020. Polycaprolactone blends for fracture fixation in low load-bearing applications. J. Appl. Polym. Sci. 137, 48940.
    Cheng, N., Wang, Y.Q., Zhang, Y.F., Shi, B., 2013. The osteogenic potential of mesoporous bioglasses/silk and non-mesoporous bioglasses/silk scaffolds in ovariectomized rats: in vitro and in vivo evaluation. PLoS ONE 8, e81014.
    Collins, M.N., Ren, G., Young, K., Pina, S., Reis, R.L., Oliveira, J.M., 2021. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609.
    Costa-Pinto, A.R., Reis, R.L., Neves, N.M., 2011. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng. Part B Rev. 17, 331-347.
    Cywar, R.M., Rorrer, N.A., Hoyt, C.B., Beckham, G.T., Chen, E.Y.X., 2022. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7, 83-103.
    Deepthi, S., Venkatesan, J., Kim, S.K., Bumgardner, J.D., Jayakumar, R., 2016. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 93, 1338-1353.
    Demeyer, S., Athipornchai, A., Pabunrueang, P., Trakulsujaritchok, T., 2021. Development of mangiferin loaded chitosan-silica hybrid scaffolds: physicochemical and bioactivity characterization. Carbohydr. Polym. 261, 117905.
    Doustdar, F., Olad, A., Ghorbani, M., 2022. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. Int. J. Biol. Macromol. 208, 912-924.
    Fang, Y.C., Zhang, T., Song, Y., Sun, W., 2020. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering. Biomed. Mater. 15, 045003.
    Felfel, R.M., Gideon-Adeniyi, M.J., Zakir Hossain, K.M., Roberts, G.A.F., Grant, D.M., 2019. Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydr. Polym. 204, 59-67.
    Fernandez-Yague, M.A., Abbah, S.A., McNamara, L., Zeugolis, D.I., Pandit, A., Biggs, M.J., 2015. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 84, 1-29.
    Filippi, M., Born, G., Chaaban, M., Scherberich, A., 2020. Natural polymeric scaffolds in bone regeneration. Front. Bioeng. Biotechnol. 8, 474.
    Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782.
    Gholap, A.D., Rojekar, S., Kapare, H.S., Vishwakarma, N., Raikwar, S., Garkal, A., Mehta, T.A., Jadhav, H., Prajapati, M.K., Annapure, U., 2024. Chitosan scaffolds: expanding horizons in biomedical applications. Carbohydr. Polym. 323, 121394.
    Gu, Z.P., Xie, H.X., Huang, C.C., Li, L., Yu, X.X., 2013. Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing. Int. J. Biol. Macromol. 58, 121-126.
    Guo, L.Q., Liang, Z.H., Yang, L., Du, W.Y., Yu, T., Tang, H.Y., Li, C.D., Qiu, H.B., 2021. The role of natural polymers in bone tissue engineering. J. Control. Release 338, 571-582.
    He, Y., Mu, C.Y., Shen, X.K., Yuan, Z., Liu, J., Chen, W.Z., Lin, C.C., Tao, B.L., Liu, B., Cai, K.Y., 2018. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment. Acta Biomater. 80, 412-424.
    Islam, M.M., Shahruzzaman, M., Biswas, S., Nurus Sakib, M., Rashid, T.U., 2020. Chitosan based bioactive materials in tissue engineering applications-a review. Bioact. Mater. 5, 164-183.
    Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347, 768-771.
    Jia, Z.R., Gong, J.L., Zeng, Y., Ran, J.H., Liu, J., Wang, K.F., Xie, C.M., Lu, X., Wang, J., 2021. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv. Funct. Mater. 31, 2010461.
    Kandelousi, P.S., Rabiee, S.M., Jahanshahi, M., Nasiri, F., 2019. The effect of bioactive glass nanoparticles on polycaprolactone/chitosan scaffold: melting enthalpy and cell viability. J. Bioact. Compat. Polym. 34, 97-111.
    Kandil, H., Ekram, B., Abo-Zeid, M.A.M., 2023. Cytocompatibility of MG-63 osteosarcoma cells on chitosan/hydroxyapatite/lignin hybrid composite scaffold in vitro. Biomed. Mater. 18, 015002.
    Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., Cho, C.S., 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 26, 1-21.
    Levengood, S.L., Zhang, M.Q., 2014. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B 2, 3161-3184.
    Li, D.W., Lei, X.H., He, F.L., He, J., Liu, Y.L., Ye, Y.J., Deng, X.D., Duan, E.K., Yin, D.C., 2017. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Int. J. Biol. Macromol. 105, 584-597.
    Liu, H.R., Sun, Z.Y., Guo, C.C., 2022. Chemical modification of silk proteins: current status and future prospects. Adv. Fiber Mater. 4, 705-719.
    Logith Kumar, R., KeshavNarayan, A., Dhivya, S., Chawla, A., Saravanan, S., Selvamurugan, N., 2016. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 151, 172-188.
    Madni, A., Kousar, R., Naeem, N., Wahid, F., 2021. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 6, 11-25.
    Maharjan, B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K., Park, C.H., Kim, C.S., 2021. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 251, 117023.
    Mandal, B.B., Grinberg, A., Gil, E.S., Panilaitis, B., Kaplan, D.L., 2012. High-strength silk protein scaffolds for bone repair. Proc. Natl. Acad. Sci. USA 109, 7699-7704.
    Matsiko, A., Gleeson, J.P., O'Brien, F.J., 2015. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng. Part A 21, 486-497.
    Melchels, F.P.W., Tonnarelli, B., Olivares, A.L., Martin, I., Lacroix, D., Feijen, J., Wendt, D.J., Grijpma, D.W., 2011. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32, 2878-2884.
    Melke, J., Midha, S., Ghosh, S., Ito, K., Hofmann, S., 2016. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31, 1-16.
    Mirjalili, F., Mahmoodi, M., Khazali, S., 2024. Characterization and in vitro bioactivity evaluation of polyvinyl alcohol incorporated electro spun chitosan/fluor apatite nanofibrous scaffold for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 150, 106322.
    Mohammadi, Z., Mesgar, A.S.M., Rasouli-Disfani, F., 2016. Reinforcement of freeze-dried chitosan scaffolds with Multiphasic calcium phosphate short fibers. J. Mech. Behav. Biomed. Mater. 61, 590-599.
    Mohanty, A.K., Vivekanandhan, S., Pin, J.M., Misra, M., 2018. Composites from renewable and sustainable resources: challenges and innovations. Science 362, 536-542.
    Mohebbi, S., Nezhad, M.N., Zarrintaj, P., Jafari, S.H., Gholizadeh, S.S., Saeb, M.R., Mozafari, M., 2019. Chitosan in biomedical engineering: a critical review. Curr. Stem Cell Res. Ther. 14, 93-116.
    Pina, S., Oliveira, J.M., Reis, R.L., 2015. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv. Mater. 27, 1143-1169.
    Pohling, J., Hawboldt, K., Dave, D., 2022. Comprehensive review on pre-treatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications. Green Chem. 24, 6790-6809.
    Preethi Soundarya, S., Haritha Menon, A., Viji Chandran, S., Selvamurugan, N., 2018. Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int. J. Biol. Macromol. 119, 1228-1239.
    Qiao, Z.G., Lian, M.F., Han, Y., Sun, B.B., Zhang, X., Jiang, W.B., Li, H.W., Hao, Y.Q., Dai, K.R., 2021. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 266, 120385.
    Rajabi, M., McConnell, M., Cabral, J., Ali, M.A., 2021. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr. Polym. 260, 117768.
    Sánchez-Cardona, Y., Echeverri-Cuartas, C.E., Londoño López, M.E., Moreno-Castellanos, N., 2021. Chitosan/gelatin/PVA scaffolds for beta pancreatic cell culture. Polymers 13, 2372.
    Sanz-Fraile, H., Amoros, S., Mendizabal, I., Galvez-Monton, C., Prat-Vidal, C., Bayes-Genis, A., Navajas, D., Farre, R., Otero, J., 2020. Silk-reinforced collagen hydrogels with raised multiscale stiffness for mesenchymal cells 3D culture. Tissue Eng. Part A 26, 358-370.
    Saravanan, S., Leena, R.S., Selvamurugan, N., 2016. Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 93, 1354-1365.
    Shao, G.F., Hanaor, D.A.H., Shen, X.D., Gurlo, A., 2020. Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176.
    Shi, L.Y., Wang, F.L., Zhu, W., Xu, Z.P., Fuchs, S., Hilborn, J., Zhu, L.J., Ma, Q., Wang, Y.J., Weng, X.S., Ossipov, D.A., 2017. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv. Funct. Mater. 27, 1700591.
    Shuai, Y.J., Lu, H., Lv, R.Y., Wang, J., Wan, Q., Mao, C.B., Yang, M.Y., 2021. Biomineralization directed by prenucleated calcium and phosphorus nanoclusters improving mechanical properties and osteogenic potential of Antheraea pernyi silk fibroin-based artificial periosteum. Adv. Healthc. Mater. 10, e2001695.
    Sionkowska, A., Płanecka, A., 2013. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J. Mol. Liq. 178, 5-14.
    Sultankulov, B., Berillo, D., Sultankulova, K., Tokay, T., Saparov, A., 2019. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules 9, 470.
    Tuwalska, A., Grabska-Zielińska, S., Sionkowska, A., 2022. Chitosan/silk fibroin materials for biomedical applications-a review. Polymers 14, 1343.
    Vinod, A., Sanjay, M.R., Suchart, S., Jyotishkumar, P., 2020. Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 258, 120978.
    Vishwanath, V., Pramanik, K., Biswas, A., 2016. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J. Biomater. Sci. Polym. Ed. 27, 657-674.
    Xiao, W.Q., Tan, Y.F., Li, J.L., Gu, C.F., Li, H., Li, B., Liao, X.L., 2018. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties. J. Biomater. Sci. Polym. Ed. 29, 2068-2082.
    Xu, H., Ge, Y.W., Lu, J.W., Ke, Q.F., Liu, Z.Q., Zhu, Z.N., Guo, Y.P., 2018. Icariin loaded-hollow bioglass/chitosan therapeutic scaffolds promote osteogenic differentiation and bone regeneration. Chem. Eng. J. 354, 285-294.
    Xu, Y.X., Xia, D.D., Han, J.M., Yuan, S.P., Lin, H., Zhao, C., 2017. Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr. Polym. 177, 210-216.
    Xu, Z.P., Shi, L.Y., Hu, D.D., Hu, B.H., Yang, M.Y., Zhu, L.J., 2016. Formation of hierarchical bone-like apatites on silk microfiber templates via biomineralization. RSC Adv. 6, 76426-76433.
    Xu, Z.P., Shi, L.Y., Yang, M.Y., Zhang, H.P., Zhu, L.J., 2015. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. J. Mater. Chem. B 3, 3634-3642.
    Yang, M.Y., Shuai, Y.J., Sunderland, K.S., Mao, C.B., 2017. Ice-templated protein nanoridges induce bone tissue formation. Adv. Funct. Mater. 27, 1703726.
    Yang, Y.T., Du, Y.Z., Zhang, J., Zhang, H.L., Guo, B.L., 2022. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv. Fiber Mater. 4, 1027-1057.
    Younes, I., Rinaudo, M., 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13, 1133-1174.
    Zhang, R.J., Chang, S.J., Jing, Y.Z., Wang, L.Y., Chen, C.J., Liu, J.T., 2023. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr. Polym. 314, 120890.
    Zhao, W.G., Cao, S.Y., Cai, H.X., Wu, Y., Pan, Q., Lin, H., Fang, J., He, Y.Y., Deng, H.B., Liu, Z.H., 2022. Chitosan/silk fibroin biomimic scaffolds reinforced by cellulose acetate nanofibers for smooth muscle tissue engineering. Carbohydr. Polym. 298, 120056.
    Zhou, C.Z., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z.G., Janin, J., 2001. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44, 119-122.
    Zhou, M.L., Wu, X.L., Luo, J.X., Yang, G.Z., Lu, Y.Z., Lin, S.H., Jiang, F., Zhang, W.J., Jiang, X.Q., 2021. Copper peptide-incorporated 3D-printed silk-based scaffolds promote vascularized bone regeneration. Chem. Eng. J. 422, 130147.
    Zhou, X.J., Wang, Z.J., Li, T., Liu, Z.L., Sun, X., Wang, W.Z., Chen, L., He, C.L., 2023. Enhanced tissue infiltration and bone regeneration through spatiotemporal delivery of bioactive factors from polyelectrolytes modified biomimetic scaffold. Mater. Today Bio 20, 100681.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (31) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint