Volume 9 Issue 3
Aug.  2024
Turn off MathJax
Article Contents
Yadong Zhao, Zheng Yang, Rusen Zhou, Bin Zheng, Meiling Chen, Fei Liu, Wenhua Miao, Renwu Zhou, Patrick Cullen, Zhenhai Xia, Liming Dai, Kostya(Ken) Ostrikov. Bacterial nanocellulose assembly into super-strong and humidity-responsive macrofibers[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 369-378. doi: 10.1016/j.jobab.2024.03.005
Citation: Yadong Zhao, Zheng Yang, Rusen Zhou, Bin Zheng, Meiling Chen, Fei Liu, Wenhua Miao, Renwu Zhou, Patrick Cullen, Zhenhai Xia, Liming Dai, Kostya(Ken) Ostrikov. Bacterial nanocellulose assembly into super-strong and humidity-responsive macrofibers[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 369-378. doi: 10.1016/j.jobab.2024.03.005

Bacterial nanocellulose assembly into super-strong and humidity-responsive macrofibers

doi: 10.1016/j.jobab.2024.03.005
Funds:

Y.D.Zhao acknowledges the support from the Zhejiang Provincial Natural Science Foundation of China (No.LR23C160001) and the National Key Research and Development Program of China (No.2021YFD2100504).

  • Publish Date: 2024-08-05
  • Cellulose macrofibers (MFs) are gaining increasing interest as natural and biodegradable alternatives to fossil-derived polymers for both structural and functional applications. However, simultaneously achieving their exceptional mechanical performance and desired functionality is challenging and requires complex processing. Here, we reported a one-step approach using a tension-assisted twisting (TAT) technique for MF fabrication from bacterial cellulose (BC). The TAT stretches and aligns BC nanofibers pre-arranged in hydrogel tubes to form MFs with compactly assembled structures and enhanced hydrogen bonding among neighboring nanofibers. The as-prepared BC MFs exhibited a very high tensile strength of 1 057 MPa and exceptional lifting capacity (over 340 000 when normalized by their own weight). Moreover, due to the volume expansion of BC nanofibers upon water exposure, BC MFs quickly harvested energy from environmental moisture to untwist the bundled networks, thus generating a torsional spinning with a peak rotation speed of 884 r/(min·m). The demonstrated rapid and intense actuation response makes the MFs ideal candidates for diverse humidity-response-based applications beyond advanced actuators, remote rain indicators, intelligent switches, and smart curtains.

     

  • loading
  • [1]
    Arias, S.L., Cheng, M.K., Civantos, A., Devorkin, J., Jaramillo, C., Allain, J.P., 2020. Ion-induced nanopatterning of bacterial cellulose hydrogels for biosensing and anti-biofouling interfaces. ACS Appl. Nano Mater. 3, 6719-6728.
    [2]
    Barhoumi Meddeb, A., Chae, I., Han, A.J., Kim, S.H., Ounaies, Z., 2020. Magnetic field effects on cellulose nanocrystal ordering in a non-aqueous solvent. Cellulose 27, 7901-7910.
    [3]
    Blanco Parte, F.G., Santoso, S.P., Chou, C.C., Verma, V., Wang, H.T., Ismadji, S., Cheng, K.C., 2020. Current progress on the production, modification, and applications of bacterial cellulose. Crit. Rev. Biotechnol. 40, 397-414.
    [4]
    Chen, P.N., Xu, Y.F., He, S.S., Sun, X.M., Pan, S.W., Deng, J., Chen, D.Y., Peng, H.S., 2015. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10, 1077-1083.
    [5]
    Fernandes, M., Gama, M., Dourado, F., Souto, A.P., 2019. Development of novel bacterial cellulose composites for the textile and shoe industry. Microb. Biotechnol. 12, 650-661.
    [6]
    Gao, H.L., Zhao, R., Cui, C., Zhu, Y.B., Chen, S.M., Pan, Z., Meng, Y.F., Wen, S.M., Liu, C., Wu, H.G., Yu, S.H., 2020. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. Natl. Sci. Rev. 7, 73-83.
    [7]
    Giachini, P.A.G.S., Gupta, S.S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., Menges, A., 2020. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci. Adv. 6, eaay0929.
    [8]
    Gong, J., Lin, H.J., Dunlop, J.W.C., Yuan, J.Y., 2017. Hierarchically arranged helical fiber actuators derived from commercial cloth. Adv. Mater. 29, 1605103.
    [9]
    Guan, F.Y., Xie, Y., Wu, H.X., Meng, Y., Shi, Y., Gao, M., Zhang, Z.Y., Chen, S.Y., Chen, Y., Wang, H.P., Pei, Q.B., 2020a. Silver nanowire-bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximity. ACS Nano 14, 15428-15439.
    [10]
    Guan, Q.F., Yang, H.B., Han, Z.M., Zhou, L.C., Zhu, Y.B., Ling, Z.C., Jiang, H.B., Wang, P.F., Ma, T., Wu, H.G., Yu, S.H., 2020b. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114.
    [11]
    Guo, J.Q., Filpponen, I., Johansson, L.S., Heiβler, S., Li, L., Levkin, P., Rojas, O.J., 2018. Micro-patterns on nanocellulose films and paper by photo-induced thiol-yne click coupling: a facile method toward wetting with spatial resolution. Cellulose 25, 367-375.
    [12]
    Håkansson, K.M.O., Fall, A.B., Lundell, F., Yu, S., Krywka, C., Roth, S.V., Santoro, G., Kvick, M., Wittberg, L.P., Wågberg, L., Söderberg, L.D., 2014. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018.
    [13]
    Hooshmand, S., Aitomäki, Y., Norberg, N., Mathew, A.P., Oksman, K., 2015. Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces 7, 13022-13028.
    [14]
    Hu, S.M., Han, J., Shi, Z.J., Chen, K., Xu, N., Wang, Y.F., Zheng, R.Z., Tao, Y.Z., Sun, Q.J., Wang, Z.L., Yang, G., 2022. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14, 115.
    [15]
    Huang, J.Y., Zhao, M., Hao, Y., Wei, Q.F., 2022. Recent advances in functional bacterial cellulose for wearable physical sensing applications. Adv. Mater. Technol. 7, 2100617.
    [16]
    Iwamoto, S., Isogai, A., Iwata, T., 2011. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12, 831-836.
    [17]
    Joseph, B., Sagarika VK., Sabu, C., Kalarikkal, N., Thomas, S., 2020. Cellulose nanocomposites: fabrication and biomedical applications. J. Bioresour. Bioprod. 5, 223-237.
    [18]
    Kim, H.C., Kim, D., Lee, J.Y., Zhai, L.D., Kim, J., 2019. Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament. Int. J. Precis. Eng. Manuf. Green Technol. 6, 567-575.
    [19]
    Law, K.Y., 2022. Contact angle hysteresis on smooth/flat and rough surfaces. interpretation, mechanism, and origin. Acc. Mater. Res. 3, 1-7.
    [20]
    Law, K.L., Narayan, R., 2022. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104-116.
    [21]
    Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., Dai, J.Q., Rojas, O.J., Isogai, A., Wågberg, L., Hu, L.B., 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47-56.
    [22]
    Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2022. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235-244.
    [23]
    Liao, H.W., Na, J., Zhou, W.M., Hur, S., Chien, P.M., Wang, C., Wang, L.W., Yamauchi, Y., Yuan, Z.H., 2023. Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement. Nano Energy 116, 108769.
    [24]
    Ma, H.W., Cheng, Z.Y., Li, X.B., Li, B., Fu, Y.J., Jiang, J.C., 2023. Advances and challenges of cellulose functional materials in sensors. J. Bioresour. Bioprod. 8, 15-32.
    [25]
    Manan, S., Ullah, M.W., Ul-Islam, M., Shi, Z.J., Gauthier, M., Yang, G., 2022. Bacterial cellulose: molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties. Prog. Mater. Sci. 129, 100972.
    [26]
    Mbituyimana, B., Mao, L., Hu, S.M., Ullah, M.W., Chen, K., Fu, L.N., Zhao, W.W., Shi, Z.J., Yang, G., 2021. Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment. J. Bioresour. Bioprod. 6, 129-141.
    [27]
    Mittal, N., Ansari, F., Krishne, G.V., Brouzet, C., Chen, P., Larsson, P.T., Roth, S.V., Lundell, F., Wågberg, L., Kotov, N.A., Söderberg, L.D., 2018. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378-6388.
    [28]
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941-3994.
    [29]
    Nechyporchuk, O., Håkansson, K.M.O., Gowda VK., Lundell, F., Hagström, B., Köhnke, T., 2019. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning. Adv. Mater. Technol. 4, 1800557.
    [30]
    Sawada, D., Nishiyama, Y., Shah, R., Forsyth, V.T., Mossou, E., O'Neill, H.M., Wada, M., Langan, P., 2022. Untangling the threads of cellulose mercerization. Nat. Commun. 13, 6189.
    [31]
    Sun, C.C., 2005. True density of microcrystalline cellulose. J. Pharm. Sci. 94, 2132-2134.
    [32]
    Vanderfleet, O.M., Cranston, E.D., 2021. Production routes to tailor the performance of cellulose nanocrystals. Nat. Rev. Mater. 6, 124-144.
    [33]
    Vibert, C., Dupont, A.L., Dirrenberger, J., Passas, R., Ricard, D., Fayolle, B., 2024. Relationship between chemical and mechanical degradation of aged paper: fibre versus fibre-fibre bonds. Cellulose 31, 1855-1873.
    [34]
    Wang, S., Jiang, F., Xu, X., Kuang, Y.D., Fu, K., Hitz, E., Hu, L.B., 2017. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29, 1702498.
    [35]
    Wang, W., Xiang, C.X., Sun, D.M., Li, M.F., Yan, K.L., Wang, D., 2019. Photothermal and moisture actuator made with graphene oxide and sodium alginate for remotely controllable and programmable intelligent devices. ACS Appl. Mater. Interfaces 11, 21926-21934.
    [36]
    Wang, Y.Y., Zhao, X.Q., Li, D.M., Wu, Y.M., Wahid, F., Xie, Y.Y., Zhong, C., 2023. Review on the strategies for enhancing mechanical properties of bacterial cellulose. J. Mater. Sci. 58, 15265-15293.
    [37]
    Wei, P.D., Yu, X.J., Fang, Y.J., Wang, L., Zhang, H., Zhu, C.Z., Cai, J., 2023. Strong and tough cellulose hydrogels via solution annealing and dual cross-linking. Small 19, 2301204.
    [38]
    Westerhoff, P., Atkinson, A., Fortner, J., Wong, M.S., Zimmerman, J., Gardea-Torresdey, J., Ranville, J., Herckes, P., 2018. Low risk posed by engineered and incidental nanoparticles in drinking water. Nat. Nanotechnol. 13, 661-669.
    [39]
    Yao, J.J., Chen, S.Y., Chen, Y., Wang, B.X., Pei, Q.B., Wang, H.P., 2017. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl. Mater. Interfaces 9, 20330-20339.
    [40]
    Yao, J.J., Ji, P., Wang, B.X., Wang, H.P., Chen, S.Y., 2018. Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nanofibers for pH and glucose sensing. Sens. Actuat. B Chem. 254, 110-119.
    [41]
    Yu, X.W., Cheng, H.H., Zhang, M., Zhao, Y., Qu, L.T., Shi, G.Q., 2017. Graphene-based smart materials. Nat. Rev. Mater. 2, 17046.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (152) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return