Citation: | Prince Hotor, Ahmed H. Hassanin, Osbert Akatwijuka, Mohamed A. H. Gepreel, Mitsuo Yamamoto, Yukie Saito, Ahmed Abdel-Mawgood. Evaluating mechanism of banana pseudo-stem retting using seawater: A cost-effective surface pre-treatment approach[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 322-335. doi: 10.1016/j.jobab.2024.04.002 |
[1] |
Abd El Monssef, R.A., Hassan, E.A., Ramadan, E.M., 2016. Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann. Agric. Sci. 61, 145-154.
|
[2] |
Abouelkheir, S.S., Kamara, M.S., Atia, S.M., Amer, S.A., Youssef, M.I., Abdelkawy, R.S., Khattab, S.N., Sabry, S.A., 2020. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study. Sci. Rep. 10, 14202.
|
[3] |
Ahmad T., Danish M., 2018. Prospects of banana waste utilization in wastewater treatment: a review. J. Environ. Manag. 206, 330-348.
|
[4] |
Akatwijuka, O., Abdel-Mawgood, A., Abdel Hady Gepreel, M., Yamamoto, M., Hassanin, A.H., 2022. Influence of seawater treatment duration on physico-mechanical properties of banana trunk lignocellulosic fibers. Mater. Sci. Forum 1069, 17-22.
|
[5] |
Akatwijuka, O., Gepreel, M.A.H., Abdel-Mawgood, A., Yamamoto, M., Saito, Y., Hassanin, A.H., 2024. Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Convers. Biorefin. 14, 7449-7465.
|
[6] |
Annie Paul, S., Boudenne, A., Ibos, L., Candau, Y., Joseph, K., Thomas, S., 2008. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. Part A Appl. Sci. Manuf. 39, 1582-1588.
|
[7] |
Balda, S., Sharma, A., Capalash, N., Sharma, P., 2021. Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technol. Environ. Policy 23, 1389-1401.
|
[8] |
Bar, M., Belay, H., Alagirusamy, R., Das, A., Ouagne, P., 2022. Refining of banana fiber for load bearing application through emulsion treatment and its comparison with other traditional methods. J. Nat. Fibre. 19, 5956-5973.
|
[9] |
Bilba, K., Arsene, M.A., Ouensanga, A., 2007. Study of banana and coconut fibers Botanical composition, thermal degradation and textural observations. Bioresour. Technol. 98, 58-68.
|
[10] |
Brindha, R., Narayana, C.K., Vijayalakshmi, V., Nachane, R.P., 2019. Effect of different retting processes on yield and quality of banana pseudostem fiber. J. Nat. Fibre. 16, 58-67.
|
[11] |
Chandra, R., Abhishek, A., 2011. Bacterial decolorization of black liquor in axenic and mixed condition and characterization of metabolites. Biodegradation 22, 603-611.
|
[12] |
Chen, C.H., Chang, C.F., Liu, S.M., 2010. Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J. Hazard. Mater. 177, 281-289.
|
[13] |
Cheng, H.R., Jiang, N., 2006. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol. Lett. 28, 55-59.
|
[14] |
Das, B., Chakrabarti, K., Ghosh, S., Majumdar, B., Tripathi, S., Chakraborty, A., 2012. Effect of efficient pectinolytic bacterial isolates on retting and fibre quality of jute. Ind. Crop. Prod. 36, 415-419.
|
[15] |
DeLong, E.F., Karl, D.M., 2005. Genomic perspectives in microbial oceanography. Nature 437, 336-342.
|
[16] |
Demuner, I.F., Gomes, F.J.B., Coura, M.R., Gomes, J.S., Demuner, A.J., Carvalho, A.M.M.L., Silva, C.M., 2021. Determination of chemical modification of eucalypt kraft lignin after thermal treatment by Py-GC-MS. J. Anal. Appl. Pyroly. 156, 105158.
|
[17] |
Donaghy, J.A., Levett, P.N., Haylock, R.W., 1990. Changes in microbial populations during anaerobic flax retting. J. Appl. Bacteriol. 69, 634-641.
|
[18] |
El Oudiani, A., Chaabouni, Y., Msahli, S., Sakli, F., 2009. Physico-chemical characterisation and tensile mechanical properties ofAgave americanaL. fibres. J. Text. Inst. 100, 430-439.
|
[19] |
Elseify, L.A., Midani, M., Hassanin, A.H., Hamouda, T., Khiari, R., 2020. Long textile fibres from the midrib of date palm: physiochemical, morphological, and mechanical properties. Ind. Crop. Prod. 151, 112466.
|
[20] |
Elseify, L.A., Midani, M., Shihata, L.A., El-Mously, H., 2019. Review on cellulosic fibers extracted from date palms (Phoenix dactylifera L.) and their applications. Cellulose 26, 2209-2232.
|
[21] |
Fackler, K., Stevanic, J.S., Ters, T., Hinterstoisser, B., Schwanninger, M., Salmén, L., 2010. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microb. Technol. 47, 257-267.
|
[22] |
Fang, C.J., Thomsen, M.H., Brudecki, G.P., Cybulska, I., Frankær, C.G., Bastidas-Oyanedel, J.R., Schmidt, J.E., 2015. Seawater as alternative to freshwater in pretreatment of date palm residues for bioethanol production in coastal and/or arid areas. ChemSusChem 8, 3823-3831.
|
[23] |
Feleke, K., Thothadri, G., Beri Tufa, H., Rajhi, A.A., Ahmed, G.M.S., 2023. Extraction and characterization of fiber and cellulose from Ethiopian linseed straw: determination of retting period and optimization of multi-step alkaline peroxide process. Polym. (Basel) 15, 469.
|
[24] |
French, A.D., 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885-896.
|
[25] |
Gañán, P., Cruz, J., Garbizu, S., Arbelaiz, A., Mondragon, I., 2004a. Stem and bunch banana fibers from cultivation wastes: effect of treatments on physico-chemical behavior. J. Appl. Polym. Sci. 94, 1489-1495.
|
[26] |
Gañán, P., Zuluaga, R., Velez, J.M., Mondragon, I., 2004b. Biological natural retting for determining the hierarchical structuration of banana fibers. Macromol. Biosci. 4, 978-983.
|
[27] |
Gonçalves, A.P.B., de Miranda, C.S., Guimarães, D.H., de Oliveira, J.C., Cruz, A.M.F., da Silva, F.L.B.M., Luporini, S., José, N.M., 2015. Physicochemical, mechanical and morphologic characterization of purple banana fibers. Mat. Res. 18, 205-209.
|
[28] |
Guimarães, J.L., Frollini, E., da Silva, C.G., Wypych, F., Satyanarayana, K.G., 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crop. Prod. 30, 407-415.
|
[29] |
Harit, J., Patil, M., 2011. Biopulping of sugarcane bagasse using Manganese peroxidase from Penicillium oxalicum isolate-1. Rom. Biotechnol. Lett. 16, 6809-6819.
|
[30] |
Hossain, M.M., Siddiquee, S., Kumar, V., 2022. Water sources derived bio retting effect on kenaf fiber compositions. J. Nat. Fibre. 19, 9396-9409.
|
[31] |
Ivanova, E.P., Vysotskii, M.V., Svetashev, V.I., Nedashkovskaya, O.I., Gorshkova, N.M., Mikhailov, V.V., Yumoto, N., Shigeri, Y., Taguchi, T., Yoshikawa, S., 1999. Characterization of Bacillus strains of marine origin. Int. Microbiol. 2, 267-271.
|
[32] |
Jacob, J.H., Irshaid, F.I., 2012. Biochemical and molecular taxonomy of a mild halophilic strain of Citrobacter isolated from hypersaline environment. Res. J. Microbiol. 7, 219-226.
|
[33] |
Jiang, L.P., Du, P., Wang, H., 2021a. Seawater modification of lignocellulosic fibers: comparison of rice husk and rice straw fibers. Mater. Res. Expr. 8, 035102.
|
[34] |
Jiang, L.P., Wang, H., Kong, Y., Du, P., 2021b. Physicochemical and thermal properties of lignocellulosic fibers from wheat straw: effect of seawater modification. Mater. Res. Expr. 8, 055101.
|
[35] |
Jones, G.E., 1967. Precipitates from autoclaved seawater1. Limnol. Oceanogr. 12, 165-167.
|
[36] |
Juradin, S., Boko, I., Netinger Grubeša, I., Jozić, D., Mrakovčić, S., 2021. Influence of different treatment and amount of Spanish broom and hemp fibres on the mechanical properties of reinforced cement mortars. Constr. Build. Mater. 273, 121702.
|
[37] |
Khan, S.I., Zada, N.S., Sahinkaya, M., Nigar Colak, D., Ahmed, S., Hasan, F., Belduz, A.O., Çanakçi, S., Khan, S., Badshah, M., Shah, A.A., 2021. Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5. Enzyme Microb. Technol. 151, 109917.
|
[38] |
Li, K., Fu, S.Y., Zhan, H.Y., Zhan, Y., Lucia, L.A., 2010. Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 5, 576-585.
|
[39] |
Li, S., Niu, Y.Y., Chen, H., He, P.Q., 2021. Complete genome sequence of an arctic ocean bacterium Shewanella sp. Arc9-LZ with capacity of synthesizing silver nanoparticles in darkness. Mar. Genom. 56, 100808.
|
[40] |
Li, Y.Q., Lei, L., Zheng, L., Xiao, X.M., Tang, H., Luo, C.B., 2020. Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol. Biofuel. 13, 34.
|
[41] |
Mardin, H., Wardana, I.N.G., Pratikto, S.W., Kamil, K., 2016. Effect of sugar palm fiber surface on interfacial bonding with natural sago matrix. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2016/9240416.
|
[42] |
Mei, J.F., Shen, X.B., Gang, L.P., Xu, H.J., Wu, F.F., Sheng, L.Q., 2020. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently. Bioresour. Technol. 310, 123445.
|
[43] |
Mohamad R, R.M.A., Zainal A, A.Z.A., Mohd O, O.S., 2016. Screening of ligninase-producing bacteria from South East Pahang peat swamp forest soil. Malays. J. Microbiol. 12, 433-437.
|
[44] |
Nagarajan, K.J., Ramanujam, N.R., Sanjay, M.R., Siengchin, S., Surya Rajan, B., Sathick Basha, K., Madhu, P., Raghav, G.R., 2021. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: pretreatment, preparation, and characterization. Polym. Compos. 42, 1588-1630.
|
[45] |
Nessim, R.B., Tadros, H.R.Z., Abou Taleb, A.E.A., Moawad, M.N., 2015. Chemistry of the Egyptian Mediterranean coastal waters. Egypt. J. Aquat. Res. 41, 1-10.
|
[46] |
Obst, J.R., Kirk, T.K., 1988. Isolation of lignin. Meth. Enzymol. 161, 3-12.
|
[47] |
Ohta, Y., Nishi, S., Haga, T., Tsubouchi, T., Hasegawa, R., Konishi, M., Nagano, Y., Tsuruwaka, Y., Shimane, Y., Mori, K., Usui, K., Suda, E., Tsutsui, K., Nishimoto, A., Fujiwara, Y., Maruyama, T., Hatada, Y., 2012. Screening and phylogenetic analysis of deep-sea bacteria capable of metabolizing lignin-derived aromatic compounds. Open J. Mar. Sci. 2, 177-187.
|
[48] |
Okoli, I.C., 2020. Banana and Plantain Wastes 3. Available at: https://researchtropica.com/banana-and-plantain-wastes-3/.
|
[49] |
Othoum, G., Prigent, S., Derouiche, A., Shi, L., Bokhari, A., Alamoudi, S., Bougouffa, S., Gao, X., Hoehndorf, R., Arold, S.T., Gojobori, T., Hirt, H., Lafi, F.F., Nielsen, J., Bajic, V.B., Mijakovic, I., Essack, M., 2019. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci. Rep. 9, 19254.
|
[50] |
Padam, B.S., Tin, H.S., Chye, F.Y., Abdullah, M.I., 2014. Banana by-products: an under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 51, 3527-3545.
|
[51] |
Park, Y., Jang, S.K., Park, J.H., Yang, S.Y., Chung, H., Han, Y., Chang, Y.S., Choi, I.G., Yeo, H., 2017. Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam. J. Wood Sci. 63, 635-643.
|
[52] |
Rabbee, M.F., Ali, M.S., Choi, J., Hwang, B.S., Jeong, S.C., Baek, K.H., 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24, 1046.
|
[53] |
Raj, A., Chandra, R., Reddy, M.M.K., Purohit, H.J., Kapley, A., 2007. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillusaneurinilyticus from the sludge of a pulp paper mill. World J. Microbiol. Biotechnol. 23, 793-799.
|
[54] |
Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R., 2016. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23, 2905-2916.
|
[55] |
Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R., 2017. Influence of treatments on the mechanical and thermal properties of sugar palm fibre reinforced phenolic composites. Bioresources 12, 1447-1462.
|
[56] |
Ravindran, R., Jaiswal, A.K., 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour. Technol. 199, 92-102.
|
[57] |
Reddy, K.O., Maheswari, C.U., Dhlamini, M.S., Mothudi, B.M., Kommula, V.P., Zhang, J.M., Zhang, J., Rajulu, A.V., 2018. Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydr. Polym. 188, 85-91.
|
[58] |
Rodrigues, C.J.C., de Carvalho, C.C.C.R., 2022. Cultivating marine bacteria under laboratory conditions: overcoming the “unculturable” dogma. Front. Bioeng. Biotechnol. 10, 964589.
|
[59] |
Sana, R., Foued, K., Yosser, B.M., Mounir, J., Slah, M., Bernard, D., 2015. Flexural properties of typha natural fiber-reinforced polyester composites. Fibres. Polym. 16, 2451-2457.
|
[60] |
Sango, T., Cheumani Yona, A.M., Duchatel, L., Marin, A., Kor Ndikontar, M., Joly, N., Lefebvre, J.M., 2018. Step-wise multi-scale deconstruction of banana pseudo-stem (Musa acuminata) biomass and morpho-mechanical characterization of extracted long fibres for sustainable applications. Ind. Crop. Prod. 122, 657-668.
|
[61] |
Satomi, M., 2014. Shewanella. Encycl Food Microbiol Second Ed, 397-407. Available at: https://doi.org/10.1016/B978-0-12-384730-0.00307-4.
|
[62] |
Segal, L., Creely, J.J., Martin, A.E. Jr, Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786-794.
|
[63] |
Sisti, L., Totaro, G., Vannini, M., Celli, A., 2018. Retting process as a pretreatment of natural fibers for the development of polymer composites. Lignocellulosic Composite Materials. Cham: Springer, 97-135.
|
[64] |
Soraisham, L.D., Gogoi, N., Mishra, L., Basu, G., 2022. Extraction and evaluation of properties of Indian banana fibre (Musa domestica var. Balbisiana, BB group) and its processing with ramie. J. Nat. Fibre. 19, 5839-5850.
|
[65] |
Speight, J.G., 2020. Refinery feedstocks. Refin Feed. Available at: https://doi.org/10.1201/9780429398285.
|
[66] |
Subagyo, A., Chafidz, A., 2020. Banana pseudo-stem fiber: preparation, characteristics, and applications. Banana Nutrition: Function and Processing Kinetics. London: IntechOpen.
|
[67] |
Taha, I., Steuernagel, L., Ziegmann, G., 2006. Chemical modification of date palm mesh fibres for reinforcement of polymeric materials. Part I: examination of different cleaning methods. Polym. Polym. Compos. 14, 767-778.
|
[68] |
Taha, I., Steuernagel, L., Ziegmann, G., 2007. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos. Interface. 14, 669-684.
|
[69] |
Techtmann, S.M., Fortney, J.L., Ayers, K.A., Joyner, D.C., Linley, T.D., Pfiffner, S.M., Hazen, T.C., 2015. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth. PLoS ONE 10, e0120605.
|
[70] |
Velásquez-Cock, J., Castro, C., Gañán, P., Osorio, M., Putaux, J.L., Serpa, A., Zuluaga, R., 2016. Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind. Crop. Prod. 83, 551-560.
|
[71] |
Verma, M., Ekka, A., Mohapatra, T., Ghosh, P., 2020. Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. J. Environ. Chem. Eng. 8, 104270.
|
[72] |
Vu, H.T., Scarlett, C.J., Vuong, Q.V., 2018. Phenolic compounds within banana peel and their potential uses: a review. J. Funct. Food. 40, 238-248.
|
[73] |
Wan C., Li Y., 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30, 1447-1457.
|
[74] |
Zhang, L.L., Zhu, R.Y., Chen, J.Y., Chen, J.M., Feng, X.X., 2008. Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process. Biochem. 43, 1195-1201.
|
[75] |
Zhang, L.P., Zhang, X.K., Lei, F.H., Jiang, J.X., Ji, L., 2022. Coproduction of xylo-oligosaccharides and glucose from sugarcane bagasse in subcritical CO2-assisted seawater system. Bioresour. Bioprocess. 9, 34.
|
[76] |
Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P., 2009. Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76, 51-59.
|