Volume 9 Issue 3
Aug.  2024
Turn off MathJax
Article Contents
Prince Hotor, Ahmed H. Hassanin, Osbert Akatwijuka, Mohamed A.H. Gepreel, Mitsuo Yamamoto, Yukie Saito, Ahmed Abdel-Mawgood. Evaluating mechanism of banana pseudo-stem retting using seawater: A cost-effective surface pre-treatment approach[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 322-335. doi: 10.1016/j.jobab.2024.04.002
Citation: Prince Hotor, Ahmed H. Hassanin, Osbert Akatwijuka, Mohamed A.H. Gepreel, Mitsuo Yamamoto, Yukie Saito, Ahmed Abdel-Mawgood. Evaluating mechanism of banana pseudo-stem retting using seawater: A cost-effective surface pre-treatment approach[J]. Journal of Bioresources and Bioproducts, 2024, 9(3): 322-335. doi: 10.1016/j.jobab.2024.04.002

Evaluating mechanism of banana pseudo-stem retting using seawater: A cost-effective surface pre-treatment approach

doi: 10.1016/j.jobab.2024.04.002
More Information
  • Corresponding author: E-mail address: prince.hotor@ejust.edu.eg (P. Hotor)
  • Available Online: 2024-04-10
  • Publish Date: 2024-07-05
  • Retting has been employed to extract natural fibers from agricultural wastes as a biological and cost-effective approach for centuries. With its global abundance, banana pseudo-stem is a promising agro-waste for lignocellulosic fiber extraction. In this study, fibers were extracted from the pseudo-stems after being pre-treated under four conditions using seawater at room temperature for up to 35 d Bacterial isolation from the fresh seawater sample and screening for ligninolytic ability were conducted. Bacterial load as well as laccase and manganese peroxidase enzyme activity profile assay during the retting duration were analyzed. Fourier transform infrared (FT-IR) and X-day diffraction (XRD) analyses were also examined for both pre-treated and untreated extracted fibers. The results shows that six out of the eight bacterial isolates had the ability to degrade lignin. The treatments (Raw stem + Raw seawater) and (Autoclaved stem + Raw seawater) recorded the highest viable bacterial load of 9.24 × 102 and 4.46 × 102 CFU, respectively, on the 14th day of the retting process. Additionally, the highest laccase and manganese peroxidase enzymes activity was recorded for (Raw stem + Raw seawater) and (Autoclaved stem + Raw seawater) treatments in the second to the third week. The FT-IR spectra of the pre-treated fibers revealed relative reductions in peaks attributed to polysaccharides and other amorphous substances for all retting conditions. The XRD diffractogram revealed that the crystallinity index (CI) of pre-treated fibers increased in all seawater retting treatment conditions. However, the CI for fibers pre-treated under enzymatic conditions were enhanced even after five weeks. Sequence analysis for selected bacterial isolates showed homology to sequences of Bacillus velezensis, Shewanella sp. L8–5, and Citrobacter amalonaticus and Bacillus subtilis j8 strain. From these findings, it was suggested that physical, biological, and chemical actions were collectively involved in the seawater retting process of banana pseudo-stems.

     

  • Declaration of competing interest
    The authors of this paper declare that there is no conflict of interest.
    CRediT authorship contribution statement
    Prince Hotor: Investigation, Data curation, Formal analysis, Writing – original draft, Writing – review & editing, Methodology. Ahmed H. Hassanin: Conceptualization, Formal analysis, Resources, Writing – review & editing, Supervision. Osbert Akatwijuka: Investigation, Data curation, Formal analysis, Writing – review & editing. Mohamed A.H. Gepreel: Formal analysis, Writing – review & editing, Supervision. Mitsuo Yamamoto: Formal analysis, Writing – review & editing. Yukie Saito: Formal analysis, Writing – review & editing. Ahmed Abdel-Mawgood: Conceptualization, Methodology, Resources, Formal analysis, Writing – review & editing.
  • loading
  • Abd El Monssef, R.A., Hassan, E.A., Ramadan, E.M., 2016. Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Ann. Agric. Sci. 61, 145–154. doi: 10.1016/j.aoas.2015.11.007
    Abouelkheir, S.S., Kamara, M.S., Atia, S.M., Amer, S.A., Youssef, M.I., Abdelkawy, R.S., Khattab, S.N., Sabry, S.A., 2020. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study. Sci. Rep. 10, 14202. doi: 10.1038/s41598-020-70857-7
    Ahmad T., Danish M., 2018. Prospects of banana waste utilization in wastewater treatment: a review. J. Environ. Manag. 206, 330–348. doi: 10.1016/j.jenvman.2017.10.061
    Akatwijuka, O., Abdel-Mawgood, A., Abdel Hady Gepreel, M., Yamamoto, M., Hassanin, A.H., 2022. Influence of seawater treatment duration on physico-mechanical properties of banana trunk lignocellulosic fibers. Mater. Sci. Forum 1069, 17–22. doi: 10.4028/p-89z3bn
    Akatwijuka, O., Gepreel, M.A.H., Abdel-Mawgood, A., Yamamoto, M., Saito, Y., Hassanin, A.H., 2024. Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Convers. Biorefin. 14, 7449–7465. doi: 10.1007/s13399-022-02819-0
    Annie Paul, S., Boudenne, A., Ibos, L., Candau, Y., Joseph, K., Thomas, S., 2008. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. Part A Appl. Sci. Manuf. 39, 1582–1588. doi: 10.1016/j.compositesa.2008.06.004
    Balda, S., Sharma, A., Capalash, N., Sharma, P., 2021. Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technol. Environ. Policy 23, 1389–1401. doi: 10.1007/s10098-021-02041-y
    Bar, M., Belay, H., Alagirusamy, R., Das, A., Ouagne, P., 2022. Refining of banana fiber for load bearing application through emulsion treatment and its comparison with other traditional methods. J. Nat. Fibre. 19, 5956–5973. doi: 10.1080/15440478.2021.1902901
    Bilba, K., Arsene, M.A., Ouensanga, A., 2007. Study of banana and coconut fibers Botanical composition, thermal degradation and textural observations. Bioresour. Technol. 98, 58–68. doi: 10.1016/j.biortech.2005.11.030
    Brindha, R., Narayana, C.K., Vijayalakshmi, V., Nachane, R.P., 2019. Effect of different retting processes on yield and quality of banana pseudostem fiber. J. Nat. Fibre. 16, 58–67. doi: 10.1080/15440478.2017.1401505
    Chandra, R., Abhishek, A., 2011. Bacterial decolorization of black liquor in axenic and mixed condition and characterization of metabolites. Biodegradation 22, 603–611. doi: 10.1007/s10532-010-9433-1
    Chen, C.H., Chang, C.F., Liu, S.M., 2010. Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J. Hazard. Mater. 177, 281–289. doi: 10.1016/j.jhazmat.2009.12.030
    Cheng, H.R., Jiang, N., 2006. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol. Lett. 28, 55–59. doi: 10.1007/s10529-005-4688-z
    Das, B., Chakrabarti, K., Ghosh, S., Majumdar, B., Tripathi, S., Chakraborty, A., 2012. Effect of efficient pectinolytic bacterial isolates on retting and fibre quality of jute. Ind. Crop. Prod. 36, 415–419. doi: 10.1016/j.indcrop.2011.10.003
    DeLong, E.F., Karl, D.M., 2005. Genomic perspectives in microbial oceanography. Nature 437, 336–342. doi: 10.1038/nature04157
    Demuner, I.F., Gomes, F.J.B., Coura, M.R., Gomes, J.S., Demuner, A.J., Carvalho, A.M.M.L., Silva, C.M., 2021. Determination of chemical modification of eucalypt kraft lignin after thermal treatment by Py-GC–MS. J. Anal. Appl. Pyroly. 156, 105158. doi: 10.1016/j.jaap.2021.105158
    Donaghy, J.A., Levett, P.N., Haylock, R.W., 1990. Changes in microbial populations during anaerobic flax retting. J. Appl. Bacteriol. 69, 634–641. doi: 10.1111/j.1365-2672.1990.tb01556.x
    El Oudiani, A., Chaabouni, Y., Msahli, S., Sakli, F., 2009. Physico-chemical characterisation and tensile mechanical properties ofAgave americanaL. fibres. J. Text. Inst. 100, 430–439. doi: 10.1080/00405000701863350
    Elseify, L.A., Midani, M., Hassanin, A.H., Hamouda, T., Khiari, R., 2020. Long textile fibres from the midrib of date palm: physiochemical, morphological, and mechanical properties. Ind. Crop. Prod. 151, 112466. doi: 10.1016/j.indcrop.2020.112466
    Elseify, L.A., Midani, M., Shihata, L.A., El-Mously, H., 2019. Review on cellulosic fibers extracted from date palms (Phoenix dactylifera L.) and their applications. Cellulose 26, 2209–2232. doi: 10.1007/s10570-019-02259-6
    Fackler, K., Stevanic, J.S., Ters, T., Hinterstoisser, B., Schwanninger, M., Salmén, L., 2010. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme Microb. Technol. 47, 257–267. doi: 10.1016/j.enzmictec.2010.07.009
    Fang, C.J., Thomsen, M.H., Brudecki, G.P., Cybulska, I., Frankær, C.G., Bastidas-Oyanedel, J.R., Schmidt, J.E., 2015. Seawater as alternative to freshwater in pretreatment of date palm residues for bioethanol production in coastal and/or arid areas. ChemSusChem 8, 3823–3831. doi: 10.1002/cssc.201501116
    Feleke, K., Thothadri, G., Beri Tufa, H., Rajhi, A.A., Ahmed, G.M.S., 2023. Extraction and characterization of fiber and cellulose from Ethiopian linseed straw: determination of retting period and optimization of multi-step alkaline peroxide process. Polym. (Basel) 15, 469. doi: 10.3390/polym15020469
    French, A.D., 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885–896. doi: 10.1007/s10570-013-0030-4
    Gañán, P., Cruz, J., Garbizu, S., Arbelaiz, A., Mondragon, I., 2004a. Stem and bunch banana fibers from cultivation wastes: effect of treatments on physico-chemical behavior. J. Appl. Polym. Sci. 94, 1489–1495. doi: 10.1002/app.21061
    Gañán, P., Zuluaga, R., Velez, J.M., Mondragon, I., 2004b. Biological natural retting for determining the hierarchical structuration of banana fibers. Macromol. Biosci. 4, 978–983. doi: 10.1002/mabi.200400041
    Gonçalves, A.P.B., de Miranda, C.S., Guimarães, D.H., de Oliveira, J.C., Cruz, A.M.F., da Silva, F.L.B.M., Luporini, S., José, N.M., 2015. Physicochemical, mechanical and morphologic characterization of purple banana fibers. Mat. Res. 18, 205–209. doi: 10.1590/1516-1439.366414
    Guimarães, J.L., Frollini, E., da Silva, C.G., Wypych, F., Satyanarayana, K.G., 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crop. Prod. 30, 407–415. doi: 10.1016/j.indcrop.2009.07.013
    Harit, J., Patil, M., 2011. Biopulping of sugarcane bagasse using Manganese peroxidase from Penicillium oxalicum isolate-1. Rom. Biotechnol. Lett. 16, 6809–6819.
    Hossain, M.M., Siddiquee, S., Kumar, V., 2022. Water sources derived bio retting effect on kenaf fiber compositions. J. Nat. Fibre. 19, 9396–9409. doi: 10.1080/15440478.2021.1982829
    Ivanova, E.P., Vysotskii, M.V., Svetashev, V.I., Nedashkovskaya, O.I., Gorshkova, N.M., Mikhailov, V.V., Yumoto, N., Shigeri, Y., Taguchi, T., Yoshikawa, S., 1999. Characterization of Bacillus strains of marine origin. Int. Microbiol. 2, 267–271.
    Jacob, J.H., Irshaid, F.I., 2012. Biochemical and molecular taxonomy of a mild halophilic strain of Citrobacter isolated from hypersaline environment. Res. J. Microbiol. 7, 219–226. doi: 10.3923/jm.2012.219.226
    Jiang, L.P., Du, P., Wang, H., 2021a. Seawater modification of lignocellulosic fibers: comparison of rice husk and rice straw fibers. Mater. Res. Expr. 8, 035102. doi: 10.1088/2053-1591/abe8c4
    Jiang, L.P., Wang, H., Kong, Y., Du, P., 2021b. Physicochemical and thermal properties of lignocellulosic fibers from wheat straw: effect of seawater modification. Mater. Res. Expr. 8, 055101. doi: 10.1088/2053-1591/abf9cb
    Jones, G.E., 1967. Precipitates from autoclaved seawater1. Limnol. Oceanogr. 12, 165–167. doi: 10.4319/lo.1967.12.1.0165
    Juradin, S., Boko, I., Netinger Grubeša, I., Jozić, D., Mrakovčić, S., 2021. Influence of different treatment and amount of Spanish broom and hemp fibres on the mechanical properties of reinforced cement mortars. Constr. Build. Mater. 273, 121702. doi: 10.1016/j.conbuildmat.2020.121702
    Khan, S.I., Zada, N.S., Sahinkaya, M., Nigar Colak, D., Ahmed, S., Hasan, F., Belduz, A.O., Çanakçi, S., Khan, S., Badshah, M., Shah, A.A., 2021. Cloning, expression and biochemical characterization of lignin-degrading DyP-type peroxidase from Bacillus sp. Strain BL5. Enzyme Microb. Technol. 151, 109917. doi: 10.1016/j.enzmictec.2021.109917
    Li, K., Fu, S.Y., Zhan, H.Y., Zhan, Y., Lucia, L.A., 2010. Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 5, 576–585. doi: 10.15376/biores.5.2.576-585
    Li, S., Niu, Y.Y., Chen, H., He, P.Q., 2021. Complete genome sequence of an arctic ocean bacterium Shewanella sp. Arc9-LZ with capacity of synthesizing silver nanoparticles in darkness. Mar. Genom. 56, 100808. doi: 10.1016/j.margen.2020.100808
    Li, Y.Q., Lei, L., Zheng, L., Xiao, X.M., Tang, H., Luo, C.B., 2020. Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol. Biofuel. 13, 34. doi: 10.1186/s13068-020-1671-9
    Mardin, H., Wardana, I.N.G., Pratikto, S.W., Kamil, K., 2016. Effect of sugar palm fiber surface on interfacial bonding with natural sago matrix. Adv. Mater. Sci. Eng. doi: 10.1155/2016/9240416.
    Mei, J.F., Shen, X.B., Gang, L.P., Xu, H.J., Wu, F.F., Sheng, L.Q., 2020. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently. Bioresour. Technol. 310, 123445. doi: 10.1016/j.biortech.2020.123445
    Mohamad R, R.M.A., Zainal A, A.Z.A., Mohd O, O.S., 2016. Screening of ligninase-producing bacteria from South East Pahang peat swamp forest soil. Malays. J. Microbiol. 12, 433–437.
    Nagarajan, K.J., Ramanujam, N.R., Sanjay, M.R., Siengchin, S., Surya Rajan, B., Sathick Basha, K., Madhu, P., Raghav, G.R., 2021. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: pretreatment, preparation, and characterization. Polym. Compos. 42, 1588–1630. doi: 10.1002/pc.25929
    Nessim, R.B., Tadros, H.R.Z., Abou Taleb, A.E.A., Moawad, M.N., 2015. Chemistry of the Egyptian Mediterranean coastal waters. Egypt. J. Aquat. Res. 41, 1–10. doi: 10.1016/j.ejar.2015.01.004
    Obst, J.R., Kirk, T.K., 1988. Isolation of lignin. Meth. Enzymol. 161, 3–12.
    Ohta, Y., Nishi, S., Haga, T., Tsubouchi, T., Hasegawa, R., Konishi, M., Nagano, Y., Tsuruwaka, Y., Shimane, Y., Mori, K., Usui, K., Suda, E., Tsutsui, K., Nishimoto, A., Fujiwara, Y., Maruyama, T., Hatada, Y., 2012. Screening and phylogenetic analysis of deep-sea bacteria capable of metabolizing lignin-derived aromatic compounds. Open J. Mar. Sci. 2, 177–187. doi: 10.4236/ojms.2012.24021
    Okoli, I.C., 2020. Banana and Plantain Wastes 3 Available at:. https://researchtropica.com/banana-and-plantain-wastes-3/.
    Othoum, G., Prigent, S., Derouiche, A., Shi, L., Bokhari, A., Alamoudi, S., Bougouffa, S., Gao, X., Hoehndorf, R., Arold, S.T., Gojobori, T., Hirt, H., Lafi, F.F., Nielsen, J., Bajic, V.B., Mijakovic, I., Essack, M., 2019. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci. Rep. 9, 19254. doi: 10.1038/s41598-019-55726-2
    Padam, B.S., Tin, H.S., Chye, F.Y., Abdullah, M.I., 2014. Banana by-products: an under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 51, 3527–3545. doi: 10.1007/s13197-012-0861-2
    Park, Y., Jang, S.K., Park, J.H., Yang, S.Y., Chung, H., Han, Y., Chang, Y.S., Choi, I.G., Yeo, H., 2017. Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam. J. Wood Sci. 63, 635–643. doi: 10.1007/s10086-017-1657-9
    Rabbee, M.F., Ali, M.S., Choi, J., Hwang, B.S., Jeong, S.C., Baek, K.H., 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24, 1046. doi: 10.3390/molecules24061046
    Raj, A., Chandra, R., Reddy, M.M.K., Purohit, H.J., Kapley, A., 2007. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillusaneurinilyticus from the sludge of a pulp paper mill. World J. Microbiol. Biotechnol. 23, 793–799. doi: 10.1007/s11274-006-9299-x
    Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R., 2016. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23, 2905–2916. doi: 10.1007/s10570-016-1005-z
    Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., Ishak, M.R., 2017. Influence of treatments on the mechanical and thermal properties of sugar palm fibre reinforced phenolic composites. Bioresources 12, 1447–1462. doi: 10.15376/biores.12.1.1447-1462
    Ravindran, R., Jaiswal, A.K., 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour. Technol. 199, 92–102. doi: 10.1016/j.biortech.2015.07.106
    Reddy, K.O., Maheswari, C.U., Dhlamini, M.S., Mothudi, B.M., Kommula, V.P., Zhang, J.M., Zhang, J., Rajulu, A.V., 2018. Extraction and characterization of cellulose single fibers from native African Napier grass. Carbohydr. Polym. 188, 85–91. doi: 10.1016/j.carbpol.2018.01.110
    Rodrigues, C.J.C., de Carvalho, C.C.C.R., 2022. Cultivating marine bacteria under laboratory conditions: overcoming the “unculturable” dogma. Front. Bioeng. Biotechnol. 10, 964589. doi: 10.3389/fbioe.2022.964589
    Sana, R., Foued, K., Yosser, B.M., Mounir, J., Slah, M., Bernard, D., 2015. Flexural properties of typha natural fiber-reinforced polyester composites. Fibres. Polym. 16, 2451–2457. doi: 10.1007/s12221-015-5306-x
    Sango, T., Cheumani Yona, A.M., Duchatel, L., Marin, A., Kor Ndikontar, M., Joly, N., Lefebvre, J.M., 2018. Step-wise multi-scale deconstruction of banana pseudo-stem (Musa acuminata) biomass and morpho-mechanical characterization of extracted long fibres for sustainable applications. Ind. Crop. Prod. 122, 657–668. doi: 10.1016/j.indcrop.2018.06.050
    Satomi, M., 2014. Shewanella. Encycl Food Microbiol Second Ed 397–407. doi:10.1016/B978-0-12-384730-0.00307-4, Available at.
    Segal, L., Creely, J.J., Martin, A.E. Jr, Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794. doi: 10.1177/004051755902901003
    Sisti, L., Totaro, G., Vannini, M., Celli, A., 2018. Retting process as a pretreatment of natural fibers for the development of polymer composites. In: Lignocellulosic Composite Materials. Springer, Cham, pp. 97–135.
    Soraisham, L.D., Gogoi, N., Mishra, L., Basu, G., 2022. Extraction and evaluation of properties of Indian banana fibre (Musa domestica var. Balbisiana, BB group) and its processing with ramie. J. Nat. Fibre. 19, 5839–5850. doi: 10.1080/15440478.2021.1897728
    Speight, J.G., 2020. Refinery feedstocks. Refin Feed doi:10.1201/9780429398285, Available at.
    Subagyo, A., Chafidz, A., 2020. Banana pseudo-stem fiber: preparation, characteristics, and applications. Banana Nutrition: Function and Processing Kinetics. IntechOpen, London.
    Taha, I., Steuernagel, L., Ziegmann, G., 2006. Chemical modification of date palm mesh fibres for reinforcement of polymeric materials. Part Ⅰ: examination of different cleaning methods. Polym. Polym. Compos. 14, 767–778. doi: 10.1177/096739110601400802
    Taha, I., Steuernagel, L., Ziegmann, G., 2007. Optimization of the alkali treatment process of date palm fibres for polymeric composites. Compos. Interface. 14, 669–684. doi: 10.1163/156855407782106528
    Techtmann, S.M., Fortney, J.L., Ayers, K.A., Joyner, D.C., Linley, T.D., Pfiffner, S.M., Hazen, T.C., 2015. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth. PLoS ONE 10, e0120605. doi: 10.1371/journal.pone.0120605
    Velásquez-Cock, J., Castro, C., Gañán, P., Osorio, M., Putaux, J.L., Serpa, A., Zuluaga, R., 2016. Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Ind. Crop. Prod. 83, 551–560. doi: 10.1016/j.indcrop.2015.12.070
    Verma, M., Ekka, A., Mohapatra, T., Ghosh, P., 2020. Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. J. Environ. Chem. Eng. 8, 104270. doi: 10.1016/j.jece.2020.104270
    Vu, H.T., Scarlett, C.J., Vuong, Q.V., 2018. Phenolic compounds within banana peel and their potential uses: a review. J. Funct. Food. 40, 238–248. doi: 10.1016/j.jff.2017.11.006
    Wan C., Li Y., 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30, 1447–1457. doi: 10.1016/j.biotechadv.2012.03.003
    Zhang, L.L., Zhu, R.Y., Chen, J.Y., Chen, J.M., Feng, X.X., 2008. Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process. Biochem. 43, 1195–1201. doi: 10.1194/jlr.M700426-JLR200
    Zhang, L.P., Zhang, X.K., Lei, F.H., Jiang, J.X., Ji, L., 2022. Coproduction of xylo-oligosaccharides and glucose from sugarcane bagasse in subcritical CO2-assisted seawater system. Bioresour. Bioprocess. 9, 34. doi: 10.1145/3569966.3569975
    Zuluaga, R., Putaux, J.L., Cruz, J., Vélez, J., Mondragon, I., Gañán, P., 2009. Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 76, 51–59. doi: 10.1016/j.carbpol.2008.09.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (285) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return