Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Luis Quijano, Raquel Rodrigues, Dagmar Fischer, Jorge David Tovar-Castro, Alice Payne, Laura Navone, Yating Hu, Hao Yan, Phitsanu Pinmanee, Edgar Poon, Jinghe Yang, Eve Barro. Bacterial cellulose cookbook: A systematic review on sustainable and cost-effective substrates[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 379-409. doi: 10.1016/j.jobab.2024.05.003
Citation: Luis Quijano, Raquel Rodrigues, Dagmar Fischer, Jorge David Tovar-Castro, Alice Payne, Laura Navone, Yating Hu, Hao Yan, Phitsanu Pinmanee, Edgar Poon, Jinghe Yang, Eve Barro. Bacterial cellulose cookbook: A systematic review on sustainable and cost-effective substrates[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 379-409. doi: 10.1016/j.jobab.2024.05.003

Bacterial cellulose cookbook: A systematic review on sustainable and cost-effective substrates

doi: 10.1016/j.jobab.2024.05.003
Funds:

The primary author wishes to thank the Fulbright Future Scholarship, Australian Government Research Training (RTP) Scholarship, and the ARC Centre of Excellence in Synthetic Biology for their support.

  • Publish Date: 2024-05-27
  • Bacterial cellulose is a versatile material with applications in many industries. However, the widespread uptake of bacterial cellulose faces challenges including high production costs and lack of scalability. One approach to address these obstacles is the use of alternative substrates and media, compared to the Hestrin-Schramm (HS) media. By evaluating and selecting appropriate media and substrates, the production of bacterial cellulose can be more efficient: enabling sustainable systems and supply chains where less energy and materials are lost, and the output production is increased. The purpose of this paper is to analyze the current landscape of bacterial cellulose alternative media and substrates (ingredients). Through a systematic review of 198 papers, this review identifies 299 alternative substrates from 12 industries and 101 bacterial cellulose-producing strains, which were systematically compared. This review also finds that there are methodological gaps in this field such as data variability, papers mislabelling the HS media or not using a comparison media, and a lack of strain names. This alternative substrate analysis for bacterial cellulose production demonstrates that overall, for some applications alternative substrates can be taken into consideration that are not only cheaper, but also produce higher yields than HS media.

     

  • loading
  • [1]
    Abdelraof, M., Hasanin, M.S., El-Saied, H., 2019. Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr. Polym. 211, 75-83.
    [2]
    Abol-Fotouh, D., Hassan, M.A., Shokry, H., Roig, A., Azab, M.S., Kashyout, A.E.H B., 2020. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 10, 3491.
    [3]
    Abouelkheir, S.S., Kamara, M.S., Atia, S.M., Amer, S.A., Youssef, M.I., Abdelkawy, R.S., Khattab, S.N., Sabry, S.A., 2020. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study. Sci. Rep. 10, 14202.
    [4]
    Adebayo-Tayo, B.A., Akintunde, M., Alao, S., 2017a. Comparative effect of agrowastes on bacterial cellulose production by Acinetobacter sp. ban1 and Acetobacter pasteurianus PW1. Turk. J. Agri. Nat. Sci, 4, 145-154.
    [5]
    Adebayo-Tayo, B.A., Akintunde, M., Sanusi, J., 2017b. Effect of different fruit juice media on bacterial cellulose production by Acinetobacter sp. ban1 and Acetobacter pasteurianus PW1. J. Adv. Biol. Biotechnol. 14, 1-9.
    [6]
    Adnan, A., Nair, G.R., Lay, M.C., Swan, J.E., Umar, R., 2015. Glycerol as a cheaper carbon source in bacterial cellulose (BC) production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. Malays. J. Analyt. Sci. 19, 1131-1136.
    [7]
    Afreen, S.S., Lokeshappa, B., 2014. Production of bacterial cellulose from Acetobacter Xylinum using fruits wastes as substrate. Int. J. Sci. Technol. 2, 57.
    [8]
    Al-Abdallah, W., Dahman, Y., 2013. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues. Bioprocess Biosyst. Eng. 36, 1735-1743.
    [9]
    Aleshina, L.A., Gladysheva, E.K., Budaeva, V.V., Skiba, E.A., Arkharova, N.A., Sakovich, G.V., 2018. X-ray diffraction study of bacterial nanocellulose produced by the Medusomyces gisevii Sa-12 culture in enzymatic hydrolysates of oat hulls. Crystallogr. Rep. 63, 955-960.
    [10]
    Algar, I., Fernandes, S.C.M., Mondragon, G., Castro, C., Garcia-Astrain, C., Gabilondo, N., Retegi, A., Eceiza, A., 2014. Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. J. Appl. Polym. Sci. 132, e41237.
    [11]
    Andriani, D., Apriyana, A.Y., Karina, M., 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose 27, 6747-6766.
    [12]
    Andritsou, V., de Melo, E.M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A.A., Matharu, A.S., 2018. Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega 3, 10365-10373.
    [13]
    Azeredo, H.M.C., Barud, H., Farinas, C.S., Vasconcellos, V.M., Claro, A.M., 2019. Bacterial cellulose as a raw material for food and food packaging applications. Front. Sustain. Food Syst. 3, 7.
    [14]
    Bandyopadhyay, S., Saha, N., Brodnjak, U.V., Saha, P., 2018. Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Mater. Res. Express 5, 115405.
    [15]
    Barshan, S., Rezazadeh-Bari, M., Almasi, H., Amiri, S., 2019. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int. J. Biol. Macromol. 136, 1188-1195.
    [16]
    Bianchet, R.T., Vieira Cubas, A.L., Machado, M.M., Siegel Moecke, E.H., 2020. Applicability of bacterial cellulose in cosmetics-bibliometric review. Biotechnol. Rep. 27, e00502.
    [17]
    Bilgi, E., Bayir, E., Sendemir-Urkmez, A., Hames, E.E., 2016. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int. J. Biol. Macromol. 90, 2-10.
    [18]
    Çakar, F., Katı, A., Özer, I., Demirbağ, D.D., Şahin, F., Aytekin, A.Ö., 2014a. Newly developed medium and strategy for bacterial cellulose production. Biochem. Eng. J. 92, 35-40.
    [19]
    Çakar, F., Özer, I., Özhan Aytekin, A., Şahin, F., 2014b. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr. Polym. 106, 7-13.
    [20]
    Cañas-Gutiérrez, A., Osorio, M., Molina-Ramírez, C., Arboleda-Toro, D., Castro-Herazo, C., 2020. Bacterial cellulose: a biomaterial with high potential in dental and oral applications. Cellulose 27, 9737-9754.
    [21]
    Cao, Y., Lu, S.M., Yang, Y., 2018. Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii. Cellulose 25, 6977-6988.
    [22]
    Carreira, P., Mendes, J.A.S., Trovatti, E., Serafim, L.S., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., 2011. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour. Technol. 102, 7354-7360.
    [23]
    Castro, C., Zuluaga, R., Putaux, J.L., Caro, G., Mondragon, I., Gañán, P., 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr. Polym. 84, 96-102.
    [24]
    Cavka, A., Guo, X., Tang, S.J., Winestrand, S., Jönsson, L.J., Hong, F., 2013. Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol. Biofuel. 6, 25.
    [25]
    Cerrutti, P., Roldán, P., García, R.M., Galvagno, M.A., Vázquez, A., Foresti, M.L., 2016. Production of bacterial nanocellulose from wine industry residues: importance of fermentation time on pellicle characteristics. J. Appl. Polym. Sci. 133, e43109.
    [26]
    Ch'ng, C.H., Rahman, M.R.A., Muhamad, I.I., Pa'e, N., Zaidel D.N.A., 2020. Optimization of bacterial cellulose production from pineapple waste using different fermentation method. Chem. Eng. Transact. 78, 559-564.
    [27]
    Chen, G.Q., Wu, G.C., Alriksson, B., Wang, W., Hong, F.F., Jönsson, L.J., 2017a. Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets. Polymers 9, 458.
    [28]
    Chen, H.H., Liu, Y., Wang, H.M., 2017b. Employing poplar wood hydrolysate to prepare bacterial cellulose. Biotechnol. Bull. 33(3), 144-150.
    [29]
    Chen, J., Yang, X., Chen, L., Chen, S., Wang, H., Hong, F., 2013a. Production of bacterial cellulose from sugarcane molasses J. Cellul. Sci. Technol. 21, 15-21.
    [30]
    Chen, J.B., Chen, C.T., Liang, G.Y., Xu, X.R., Hao, Q.L., Sun, D.P., 2019. In situ preparation of bacterial cellulose with antimicrobial properties from bioconversion of mulberry leaves. Carbohydr. Polym. 220, 170-175.
    [31]
    Chen, L., Hong, F., Yang, X.X., Han, S.F., 2013b. Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour. Technol. 135, 464-468.
    [32]
    Chen, X., Yuan, F.S., Zhang, H., Huang, Y., Yang, J.Z., Sun, D.P., 2016. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J. Mater. Sci. 51, 5573-5588.
    [33]
    Cheng, J., Ma, J., Yin, Y., Xu, S., Ni, C., Zhang, S., 2018. Studies on bacterial cellulose producted by Acetobacter xylinum ferment soybean molasses. J. Chin. Instit. Food Sci. Technol. 18, 125-135.
    [34]
    Cheng, Z., Yang, R.D., Liu, X., 2017a. Production of bacterial cellulose by Acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as low-cost carbon source. BioResources 12, 1190-1200.
    [35]
    Cheng, Z., Yang, R.D., Liu, X., Liu, X., Chen, H., 2017b. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour. Technol. 234, 8-14.
    [36]
    Çoban, E., Biyik, H., 2011a. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr. J. Biotechnol. 10, 5346-5354.
    [37]
    Çoban, E., Biyik, H., 2011b. Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr. J. Microbiol. Res. 5, 1037-1045.
    [38]
    Costa, A.F.S., Almeida, F.C.G., Vinhas, G.M., Sarubbo, L.A., 2017. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol. 8, 2027.
    [39]
    da Silva, C.J.G., de Medeiros, A.D.M., de Amorim, J.D.P., 2021. Bacterial cellulose biotextiles for the future of sustainable fashion: a review. Environ. Chem. Lett. 19, 2967-2980.
    [40]
    de Souza, S.S., Berti, F.V., de Oliveira, K.P.V., Pittella, C.Q.P., de Castro, J.V., Pelissari, C., Rambo, C.R., Porto, L.M., 2019. Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium. Cellulose 26, 1641-1655.
    [41]
    Deng, J., Liu, S., Yang, Y., Zhang, C., He, X., Bi, J., Chen, H., Li, C., 2015. Study on improvement of bacterial cellulose synthesis by coconut water pre-fermentation. Guangdong Agricult. Sci. 42, 84-88.
    [42]
    Dikshit, P.K., Kim, B.S., 2020. Bacterial cellulose production from biodiesel-derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. Int. J. Biol. Macromol. 153, 902-911.
    [43]
    Dima, S.O., Panaitescu, D.M., Orban, C., Ghiurea, M., Doncea, S.M., Fierascu, R.C., Nistor, C.L., Alexandrescu, E., Nicolae, C.A., Trică, B., Moraru, A., Oancea, F., 2017. Bacterial nanocellulose from side-streams of kombucha beverages production: preparation and physical-chemical properties. Polymers 9, 374.
    [44]
    Ding, Y., Shao, M., Luo, C., Luo, X., Liu, L., Chen, S., 2016. Optimization of culture media for bacterial cellulose production by fermentation of corn starch wastewater. Sci. Technol. Food Ind. 37, 193-197.
    [45]
    Dórame-Miranda, R.F., Gámez-Meza, N., Ezquerra-Brauer, J.M., Ovando-Martínez, M., Lizardi-Mendoza, J., 2019. Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydr. Polym. 207, 91-99.
    [46]
    Dubey, S., Singh, J., Singh, R.P., 2018. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. Bioresour. Technol. 247, 73-80.
    [47]
    Eagly A.H., Wood, W., 1994. Using research syntheses to plan future research. The Handbook of Research Synthesis: Russell Sage Foundation, 485-500.
    [48]
    Ebrahimi, E., Babaeipour, V., Meftahi, A., Alibakhshi, S., 2017. Effects of bio-production process parameters on bacterial cellulose mechanical properties. J. Chem. Eng. Jpn. 50, 857-861.
    [49]
    Erbas Kiziltas, E., Kiziltas, A., Gardner, D.J., 2015. Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124, 131-138.
    [50]
    Fan, X., Gao, Y., He, W.Y., Hu, H., Tian, M., Wang, K.X., Pan, S.Y., 2016. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 151, 1068-1072.
    [51]
    Faridah, F., Marita, Y., Fona, Z., Rahmayani, R., 2012. The effect of culture medium on bacterial cellulose production as edible film material. ASEAN/Asian Academic Society International Conference Proceeding Series, 20-24.
    [52]
    Fu, M., Deng, J., Luo, J., Lin, X., Li, C., Liu, S., 2019. Elucidation of the mechanism by which the filtrate of naturally fermented coconut water. Food Sci. 40, 179-184.
    [53]
    Gao, Y., Zou, X.Z., Hong, F., Chen, L., 2018. Preparation of bacterial cellulose with soybean residues. J. Cellul. Sci. Technol. 26, 17-24.
    [54]
    García-Sánchez, M.E., de Guadalajara, U., Robledo-Ortiz, J.R., Jiménez-Palomar, I., González-Reynoso, O., González-García, Y., 2020. Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Rev. Mex. Ing. Quim. 19, 851-865.
    [55]
    Gayathri, G., Srinikethan, G., 2018. Crude glycerol as a cost-effective carbon source for the production of cellulose by K. saccharivorans. Biocatal. Agric. Biotechnol. 16, 326-330.
    [56]
    Gayathri, G., Srinikethan, G., 2019. Bacterial Cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. Int. J. Biol. Macromol. 138, 950-957.
    [57]
    Gayathry, G., Gopalaswamy, G., 2013. Production of bacterial cellulose from coconut liquid endosperm using Acetobacter xylinum sju-1. J. Pure Appl. Microbiol. 7, 2389-2395.
    [58]
    Gladysheva, E.K., Skiba, E.A., Zolotukhin, V.N., Sakovich, G.V., 2018. Study of the conditions for the biosynthesis of bacterial cellulose by the producer Medusomyces gisevii sa-12. Appl. Biochem. Microbiol. 54, 179-187.
    [59]
    Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Freire, C.S.R., 2013. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55, 205-211.
    [60]
    Gong, S.X., Wang, H.R., Zhu, Z.F., Bai, Q.J., Wang, C., 2019. Comprehensive utilization of seawater in China: a description of the present situation, restrictive factors and potential countermeasures. Water 11, 397.
    [61]
    Gregory, D.A., Tripathi, L., Fricker, A.T.R., Asare, E., Orlando, I., Raghavendran, V., Roy, I., 2021. Bacterial cellulose: a smart biomaterial with diverse applications. Mater. Sci. Eng. R Rep. 145, 100623.
    [62]
    Gündüz, G., Aşık, N., 2018. Production and characterization of bacterial cellulose with different nutrient source and surface-volume ratios. Drvna Ind. 69, 141-148.
    [63]
    Guo, X., Cavka, A., Jönsson, L.J., Hong, F., 2013. Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb. Cell Fact. 12, 93.
    [64]
    Guo, X., Chen, L., Tang, J.Y., Jönsson, L.J., Hong, F.F., 2016. Production of bacterial nanocellulose and enzyme from [AMIM]Cl-pretreated waste cotton fabrics: effects of dyes on enzymatic saccharification and nanocellulose production. J. Chem. Technol. Biotechnol. 91, 1413-1421.
    [65]
    Guo, X., Zhang, S., Tang, J., Zou, X., Tang, X., Chen, L., Hong, F., 2015. Production of bacterial cellulose from waste fiber sludge. Ind. Microbiol. 45, 1-6.
    [66]
    Güzel, M., Akpınar, Ö., 2019. Production and characterization of bacterial cellulose from citrus peels. Waste Biomass Valoriz. 10, 2165-2175.
    [67]
    Güzel, M., Akpınar, Ö., 2020. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. Int. J. Biol. Macromol. 162, 1597-1604.
    [68]
    Ha, J.H., Park, J.K., 2012. Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korea. J. Chem. Eng. 29, 563-566.
    [69]
    Ha, J.H., Shah, N., Ul-Islam, M., Khan, T., Park, J.K., 2011. Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process. Biochem. 46, 1717-1723.
    [70]
    Han, X., Hong, F., 2011. Production of bacterial cellulose by using Jerusalem artichoke (Helianthus tuberosus) Tuber. Shanghai: Proceedings of 2011 International Forum on Biomedical Textile Materials.
    [71]
    Han, Y.H., Mao, H.L., Wang, S.S., Deng, J.C., Chen, D.L., Li, M., 2020. Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium. Cellulose 27, 1255-1272.
    [72]
    He, F.Q., Yang, H.M., Zeng, L.L., Hu, H., Hu, C., 2020. Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess Biosyst. Eng. 43, 927-936.
    [73]
    Henninger, C.E., Brydges, T., Le Normand, A., Luo, S., Quijano, L., Wood, J., Yan, S., 2023. How do companies communicate their ‘sustainable’ material innovations on company websites? Int. J. Sustain. Fash. Textil. 2, 163-188.
    [74]
    Hestrin, S., Schramm, M., 1954. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345-352.
    [75]
    Hong, F., Guo, X., Zhang, S., Han, S.F., Yang, G., Jönsson, L.J., 2012. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour. Technol. 104, 503-508.
    [76]
    Hong, F., Zhu, Y.X., Yang, G., Yang, X.X., 2010. Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J. Chem. Technol. Biotechnol. 86, 675-680.
    [77]
    Huang, C., Guo, H.J., Xiong, L., Wang, B., Shi, S.L., Chen, X.F., Lin, X.Q., Wang, C., Luo, J., Chen, X.D., 2016. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 136, 198-202.
    [78]
    Huang, C., Yang, X.Y., Xiong, L., Guo, H.J., Luo, J., Wang, B., Zhang, H.R., Lin, X.Q., Chen, X.D., 2015a. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 60, 491-496.
    [79]
    Huang, C., Yang, X.Y., Xiong, L., Guo, H.J., Luo, J., Wang, B., Zhang, H.R., Lin, X.Q., Chen, X.D., 2015b. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Appl. Biochem. Biotechnol. 175, 1678-1688.
    [80]
    Hungund, B., Prabhu, S., Shetty, C., Acharya, S., Prabhu, V., Gupta, S.G., 2013. Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J. Microb. Biochem. Technol. 5, 31-33.
    [81]
    Hungund, B.S., Gupta, S.G., 2010. Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26, 1823-1828.
    [82]
    Hyun, J.Y., Mahanty, B., Kim, C.G., 2014. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Appl. Biochem. Biotechnol. 172, 3748-3760.
    [83]
    Jacek, P., da Silva, F.A.G.S., Dourado, F., Bielecki, S., Gama, M., 2021. Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3. Carbohydr. Polym. Technol. Appl. 2, 100022.
    [84]
    Jagannath, A., Manjunatha, S.S., Ravi, N., Raju, P.S., 2011. The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum. J. Food Process. Eng. 34, 593-608.
    [85]
    Jahan, F., Kumar, V., Saxena, R.K., 2018. Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour. Technol. 250, 922-926.
    [86]
    Jaramillo, R.D., Perna, O., Ríos, L.E., Escobar, J., 2014. Efecto de la melaza de caña tratada con ácido sulfúrico en la produccion de celulosa por Gluconacetobacter xylinus IFO 13693. Rev. Colomb. Quim. 43, 25-31.
    [87]
    Jeremic, S., Djokic, L., Ajdačić, V., Božinović, N., Pavlovic, V., Manojlović, D.D., Babu, R., Senthamaraikannan, R., Rojas, O., Opsenica, I., Nikodinovic-Runic, J., 2019. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. Int. J. Biol. Macromol. 129, 351-360.
    [88]
    Jia, J., Yang, Y., Xing, J., Chen, J., Lu, S., 2012. Production of bacterial cellulose in the culture medium based on citrus dregs. J. Chin. Instit. Food Sci. Technol. 12, 22-28.
    [89]
    Jia, Q., Lu, H., Chen, L., Zhang, L., 2016. Effect of synergistic factor on the substances change of fermentation liquid with bacterial cellulose-producing Acetobacter xylinum. China Brew. 35, 14-18.
    [90]
    Jiang, X., Lu, H., Chen, L., 2016. Optimization of watermelon juice medium for improving bacterial cellulose yield and properties. China Brew. 35, 81-85.
    [91]
    Jin, Y.H., Lee, T., Kim, J.R., Choi, Y.E., Park, C., 2019. Improved production of bacterial cellulose from waste glycerol through investigation of inhibitory effects of crude glycerol-derived compounds by Gluconacetobacter xylinus. J. Ind. Eng. Chem. 75, 158-163.
    [92]
    Jozala, A.F., Pértile, R.A.N., dos Santos, C.A., de Carvalho Santos-Ebinuma, V., Seckler, M.M., Gama, F.M., Pessoa, A. Jr, 2015. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 99, 1181-1190.
    [93]
    Jung, H.I., Jeong, J.H., Lee, O.M., Park, G.T., Kim, K.K., Park, H.C., Lee, S.M., Kim, Y.G., Son, H.J., 2010a. Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 101, 3602-3608.
    [94]
    Jung, H.I., Lee, O.M., Jeong, J.H., Jeon, Y.D., Park, K.H., Kim, H.S., An, W.G., Son, H.J., 2010b. Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl. Biochem. Biotechnol. 162, 486-497.
    [95]
    Kamarudin, S., Mohd Sahaid, K., Mohd Sobri, T., Wan Mohtar, W.Y., Dayang Radiah, A.B., Norhasliza, H., 2013. Different media formulation on biocellulose production by Acetobacter xylinum (0416). Pertanika J. Sci. Technol. 21, 29-36.
    [96]
    Keshk, S.M.A.S., 2014. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr. Polym. 99, 98-100.
    [97]
    Khattak, W.A., Khan, T., Ul-Islam, M., Ullah, M.W., Khan, S., Wahid, F., Park, J.K., 2015a. Production, characterization and biological features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur). J. Food Sci. Technol. 52, 8343-8349.
    [98]
    Khattak, W.A., Khan, T., Ul-Islam, M., Wahid, F., Park, J.K., 2015b. Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes. J. Polym. Environ. 23, 45-53.
    [99]
    Kim S.S., Lee S.Y., Park K.J., Park S.M., An H.J., Hyun J.M., Choi Y.H., 2017. Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saud. J. Biol. Sci. 24, 314-319.
    [100]
    Klemm, D., Cranston, E.D., Fischer, D., Gama, M., Kedzior, S.A., Kralisch, D., Kramer, F., Kondo, T., Lindström, T., Nietzsche, S., Petzold-Welcke, K., Rauchfuß, F., 2018. Nanocellulose as a natural source for groundbreaking applications in materials science: today's state. Mater. Today 21, 720-748.
    [101]
    Kose, R., Sunagawa, N., Yoshida, M., Tajima, K., 2013. One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose 20, 2971-2979.
    [102]
    Kosseva, M.R., Li, M.M., Zhang, J.Y., He, Y.T., Tjutju, N.A.S., 2017. Study on the bacterial cellulose production from fruit juices. Biosci. Biotechnol. 2, 36-42.
    [103]
    Kozyrovska, N., Reva, O., Podolich, O., Kukharenko, O., Orlovska, I., Terzova, V., Zubova, G., Trovatti Uetanabaro, A.P., Góes-Neto, A., Azevedo, V., Barh, D., Verseux, C., Billi, D., Kołodziejczyk, A.M., Foing, B., Demets, R., de Vera, J.P., 2021. To other planets with upgraded millennial kombucha in rhythms of sustainability and health support. Front. Astron. Space Sci. 8, 701158.
    [104]
    Kumar, V., Sharma, D.K., Bansal, V., Mehta, D., Sangwan, R.S., Yadav, S.K., 2019. Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour. Technol. 275, 430-433.
    [105]
    Kumar, V., Sharma, D.K., Sandhu, P.P., Jadaun, J., Sangwan, R.S., Yadav, S.K., 2021. Sustainable process for the production of cellulose by an Acetobacter pasteurianus RSV-4 (MTCC 25117) on whey medium. Cellulose 28, 103-116.
    [106]
    Kumbhar, J.V., Rajwade, J.M., Paknikar, K.M., 2015. Fruit peels support higher yield and superior quality bacterial cellulose production. Appl. Microbiol. Biotechnol. 99, 6677-6691.
    [107]
    Kuo, C.H., Chen, J.H., Liou, B.K., Lee, C.K., 2016. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 53, 98-103.
    [108]
    Kuo, C.H., Huang, C.Y., Shieh, C.J., Wang, H.M D., Tseng, C.Y., 2019. Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using Gluconacetobacter xylinus. Waste Biomass Valoriz. 10, 85-93.
    [109]
    Kuo, C.H., Lin, P.J., Lee, C.K., 2010. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. J. Chem. Technol. Biotechnol. 85, 1346-1352.
    [110]
    Lan, S., Tang, X., Chen, L., Hong, F., 2014. Improved production of bacterial cellulose from cassava starch hydrolysate and pretrated mollases by agar addition in a submerged mechanical agitating fermentation. J. Cellul. Sci. Technol. 22, 32-39.
    [111]
    Lee, S.E., Park, Y.S., 2017. The role of bacterial cellulose in artificial blood vessels. Mol. Cell. Toxicol. 13, 257-261.
    [112]
    Lestari, P., Elfrida, N., Suryani, A., Suryadi, Y., 2014. Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jord. J. Biol. Sci. 7, 75-80.
    [113]
    Li, F., Chen, L., Tang, X., Hong, F., 2014. Production of bacterial cellulose from corn steep liquor and cassava hydrolysates in mechanical agitating fermenter. Ind. Microbiol. 44, 7-13.
    [114]
    Li, H.X., Kim, S.J., Lee, Y.W., Kee, C.D., Oh, I.K., 2011. Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korea. J. Chem. Eng. 28, 2306-2311.
    [115]
    Li, Y., Zhang, J., Li, Z., Shi, Y., 2013. Optimization of fermentation medium for bacterial cellulose synthesized from pineapple wine. Acta Agriculturae Boreali-occidentalis Sinica 22, 84-89.
    [116]
    Li, Y.J., Tian, C.J., Tian, H., Zhang, J.L., He, X., Ping, W.X., Lei, H., 2012. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl. Microbiol. Biotechnol. 96, 1479-1487.
    [117]
    Li, Z., Wang, L.F., Hua, J.C., Jia, S.R., Zhang, J.F., Liu, H., 2015. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr. Polym. 120, 115-119.
    [118]
    Lima, H.L.S., Nascimento, E.S., Andrade, F.K., Brígida, A.I.S., Borges, M.F., Cassales, A.R., Muniz, C.R., de S M Souza Filho, M., Morais, J.P.S., de F Rosa, M., 2017. Bacterial cellulose production by Komagataeibacter hansenii ATCC 23769 using sisal juice: an agroindustry waste. Braz. J. Chem. Eng. 34, 671-680.
    [119]
    Lin, D.H., Lopez-Sanchez, P., Li, R., Li, Z.X., 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113-119.
    [120]
    Lins, L.S.G., Silva, W.E., Belian, M.F., Calazans, G.M.T., 2019. Use of biodiesel waste for efficient production of cellulosic membranes: a “green” proposal for filter preparation. Cellul. Chem. Technol. 53, 417-425.
    [121]
    Lu, H.M., Jia, Q.H., Chen, L., Zhang, L.P., 2016. Effect of organic acids on bacterial cellulose produced by Acetobacter xylinum. J. Microbiol. Biotechnol. 5, 1-6.
    [122]
    Lu, T.F., Gao, H.L., Liao, B.W., Wu, J.J., Zhang, W., Huang, J., Liu, M.Y., Huang, J., Chang, Z.Y., Jin, M.F., Yi, Z.F., Jiang, D.M., 2020. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydr. Polym. 232, 115788.
    [123]
    Luo, J., Fu, M., Zhao, B., Wu, Y., Wang, Z., Deng, J., Li, C., Liu, S., 2020. Effects of chemical components of coconut waters from different main producing countries and pre-fermentation treatment on bacterial cellulose biosynthesis. Food Sci. 41, 97-103.
    [124]
    Luo, M.T., Huang, C., Chen, X.F., Huang, Q.L., Qi, G.X., Tian, L.L., Xiong, L., Li, H.L., Chen, X.D., 2017a. Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus. Prep. Biochem. Biotechnol. 47, 1025-1031.
    [125]
    Luo, M.T., Zhao, C., Huang, C., Chen, X.F., Huang, Q.L., Qi, G.X., Tian, L.L., Xiong, L., Li, H.L., Chen, X.D., 2017b. Efficient using durian shell hydrolysate as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. India. J. Microbiol. 57, 393-399.
    [126]
    Ma, L.N., Bi, Z.J., Xue, Y., Zhang, W., Huang, Q.Y., Zhang, L.X., Huang, Y.D., 2020. Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion. J. Mater. Chem. A 8, 5812-5842.
    [127]
    Ma, X., Dong, Y., Yu, H., 2015. Optimization of bacterial cellulose fermentation technology with distiller's grains. Transact. Chin. Soc. Agricult. Eng. 31, 302-307.
    [128]
    Machado, R.T.A., Meneguin, A.B., Sábio, R.M., Franco, D.F., Antonio, S.G., Gutierrez, J., Tercjak, A., Berretta, A.A., Ribeiro, S.J.L., Lazarini, S.C., Lustri, W.R., Barud, H.S., 2018. Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind. Crop. Prod. 122, 637-646.
    [129]
    Mangayil, R., Rissanen, A.J., Pammo, A., Guizelini, D., Losoi, P., Sarlin, E., Tuukkanen, S., Santala, V., 2020. Characterization of a novel bacterial cellulose producer for the production of eco-friendly piezoelectric-responsive films from a minimal medium containing waste carbon. Cellulose 28, 671-689.
    [130]
    McIlvaine, T.C., 1921. A buffer solution for colorimetric comparison. J. Biol. Chem. 49, 183-186.
    [131]
    Mohammadkazemi, F., Azin, M., Ashori, A., 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117, 518-523.
    [132]
    Mohammadkazemi, F., Doosthoseini, K., Azin, M., 2014. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734). Cellul. Chem. Technol. 49, 455-462.
    [133]
    Moher D., Liberati A., Tetzlaff J., Altman D.G., PRISMA Group, 2010. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8, 336-341.
    [134]
    Mohite, B.V., Salunke, B.K., Patil, S.V., 2013. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl. Biochem. Biotechnol. 169, 1497-1511.
    [135]
    Molina-Ramírez, C., Álvarez, J., Zuluaga, R., Castro, C., Gañán, P., 2020a. A novel approach using conventional methodologies to scale up BNC production using Komagataeibacter medellinensis and rotten banana waste as alternative. Processes 8, 1469.
    [136]
    Molina-Ramírez, C., Cañas-Gutiérrez, A., Castro, C., Zuluaga, R., Gañán, P., 2020b. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohydr. Polym. 240, 116341.
    [137]
    Molina-Ramírez, C., Castro, C., Zuluaga, R., Gañán, P., 2018a. Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J. Polym. Environ. 26, 830-837.
    [138]
    Molina-Ramírez, C., Enciso, C., Torres-Taborda, M., Zuluaga, R., Gañán, P., Rojas, O.J., Castro, C., 2018b. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. Int. J. Biol. Macromol. 117, 735-741.
    [139]
    Moosavi-Nasab, M., Yousefi, A., 2011. Biotechnological production of cellulose by Gluconacetobacter Xylinus from agricultural waste. Iran. J. Biotechnol. 9, 94-101.
    [140]
    Moosavi-Nasab, M., Yousefi, A.R., 2010. Investigation of physicochemical properties of the bacterial cellulose produced by Gluconacetobacter xylinus from date syrup. World Acad. Sci. Eng. Technol. 44, 1258-1263.
    [141]
    Muhamad, I.I., Muhamad, S.N.H., Salehudin, M.H., Zahan, K.A., Tong, W.Y., Pa'e, N., 2020. Effect of pandan extract concentration to chromium (IV) removal using bacterial cellulose-pandan composites prepared by in situ modification technique. Mater. Today Proc. 31, 89-95.
    [142]
    Naloka, K., Matsushita, K., Theeragool, G., 2020. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Int. J. Biol. Macromol. 150, 1113-1120.
    [143]
    Nascimento, E.S., Lima, H.L.S., De Araújo Barroso, M.K., Brígida, A.I.S., Andrade, F.K., De Fátima Borges, M., Morais, J.P.S., Muniz, C.R., De Freitas Rosa, M., 2016. Mesquite (Prosopis juliflora (sw.)) extract is an alternative nutrient source for bacterial cellulose production. J. Biobased Mater. Bioenergy 10, 63-70.
    [144]
    Okiyama, A., Shirae, H., Kano, H., Yamanaka, S., 1992. Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocoll. 6, 471-477.
    [145]
    Pacheco, G., Nogueira, C.R., Meneguin, A.B., Trovatti, E., Silva, M.C.C., Machado, R.T.A., Ribeiro, S.J.L., da Silva Filho, E.C., da S Barud, H., 2017. Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind. Crops Prod. 107, 13-19.
    [146]
    Pang, M.J., Huang, Y.H., Meng, F.S., Zhuang, Y., Liu, H., Du, M.L., Ma, Q.Q., Wang, Q., Chen, Z., Chen, L.Y., Cai, T.G., Cai, Y., 2020. Application of bacterial cellulose in skin and bone tissue engineering. Eur. Polym. J. 122, 109365.
    [147]
    Perna, O., Jaramillo, L.R., Gonzalez, V.A., 2016. Production of bacterial cellulose in corozo (bactris guineensis): an alternative for implementation in the food industry. Vitae 23, S433-S437.
    [148]
    Picheth, G.F., Pirich, C.L., Sierakowski, M.R., Woehl, M.A., Sakakibara, C.N., de Souza, C.F., Martin, A.A., da Silva, R., de Freitas, R.A., 2017. Bacterial cellulose in biomedical applications: a review. Int. J. Biol. Macromol. 104, 97-106.
    [149]
    Pickering, C., Byrne, J., 2014. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 33, 534-548.
    [150]
    Pickering, C., Grignon, J., Steven, R., Guitart, D., Byrne, J., 2015. Publishing not perishing: how research students transition from novice to knowledgeable using systematic quantitative literature reviews. Stud. High. Educ. 40, 1756-1769.
    [151]
    Ponnusami, V., Gunasekar, V., 2014. Production of pullulan by microbial fermentation. Polysaccharides 1, 1-13.
    [152]
    Pötzinger, Y., Kralisch, D., Fischer, D., 2017. Bacterial nanocellulose: the future of controlled drug delivery? Ther. Deliv. 8, 753-761.
    [153]
    Qi, G.X., Luo, M.T., Huang, C., Guo, H.J., Chen, X.F., Xiong, L., Wang, B., Lin, X.Q., Peng, F., Chen, X.D., 2017. Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. J. Appl. Polym. Sci. 134, e45066.
    [154]
    Qiao, N., Fan, X., Zhang, X.Z., Shi, Y.F., Wang, L., Yu, D.Y., 2019. Soybean oil refinery effluent treatment and its utilization for bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 97, 105185.
    [155]
    Qiu, K.Y., Netravali, A.N., 2014. A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym. Rev. 54, 598-626.
    [156]
    Qiu, X.M., Zhang, Y., Hong, H.S., 2021. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Expr. 11, 29.
    [157]
    Quijano, L., 2017. Embracing Bacterial Cellulose as a Catalyst for Sustainable Fashion. Lynchburg: Liberty University.
    [158]
    Quijano, L., Speight, R., Payne, A., 2021. Future fashion, biotechnology and the living world: microbial cell factories and forming new ‘oddkins’. Continuum 35, 897-913.
    [159]
    Raiszadeh-Jahromi, Y., Rezazadeh-Bari, M., Almasi, H., Amiri, S., 2020. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J. Food Sci. Technol. 57, 2524-2533.
    [160]
    Rani, M.U., Appaiah, K.A., 2013. Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. 50, 755-762.
    [161]
    Rani, M.U., Rastogi, N.K., Appaiah, K.A., 2011a. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract: an agro-industry waste. J. Microbiol. Biotechnol. 21, 739-745.
    [162]
    Rani, M.U., Udayasankar, K., Anu Appaiah, K.A., 2011b. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J. Appl. Polym. Sci. 120, 2835-2841.
    [163]
    Reiniati, I., Hrymak, A.N., Margaritis, A., 2017. Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochem. Eng. J. 127, 21-31.
    [164]
    Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., Shchankin, M., 2018. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol. 49, 151-159.
    [165]
    Rivas, B., Moldes, A.B., Domínguez, J.M., Parajó, J.C., 2004. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Int. J. Food Microbiol. 97, 93-98.
    [166]
    Rodrigues, A.C., Fontão, A.I., Coelho, A., Leal, M., Soares da Silva, F.A.G., Wan, Y.Z., Dourado, F., Gama, M., 2019. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. N. Biotechnol. 49, 19-27.
    [167]
    Römling, U., Galperin, M.Y., 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trend. Microbiol. 23, 545-557.
    [168]
    Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B., Samadi Kafil, H., 2019. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 122, 280-288.
    [169]
    Santoso, S.P., Chou, C.C., Lin, S.P., Soetaredjo, F.E., Ismadji, S., Hsieh, C.W., Cheng, K.C., 2020. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose 27, 2497-2509.
    [170]
    Schramm, M., Hestrin, S., 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11, 123-129.
    [171]
    Semjonovs, P., Ruklisha, M., Paegle, L., Saka, M., Treimane, R., Skute, M., Rozenberga, L., Vikele, L., Sabovics, M., Cleenwerck, I., 2017. Cellulose synthesis by Komagataeibacter rhaeticus strain P1463 isolated from Kombucha. Appl. Microbiol. Biotechnol. 101, 1003-1012.
    [172]
    Shah, N., Ul-Islam, M., Khattak, W.A., Park, J.K., 2013. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98, 1585-1598.
    [173]
    Sharma, C., Bhardwaj, N.K., 2019. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. Int. J. Biol. Macromol. 132, 166-177.
    [174]
    Shen, J.P., Luo, Q.P., Duan, X.H., Pei, C.H., 2010. Fermentation of lixivium of distiller's grains for bacterial cellulose preparation. Food Sci. 31(3), 203-206.
    [175]
    Shezad, O., Khan, S., Khan, T., Park, J.K., 2009. Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korea. J. Chem. Eng. 26, 1689-1692.
    [176]
    Shezad, O., Khan, S., Khan, T., Park, J.K., 2010. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr. Polym. 82, 173-180.
    [177]
    Singh, A., Walker, K.T., Ledesma-Amaro, R., Ellis, T., 2020. Engineering bacterial cellulose by synthetic biology. Int. J. Mol. Sci. 21, 9185.
    [178]
    Singh, O., Panesar, P.S., Chopra, H.K., 2017. Response surface optimization for cellulose production from agro industrial waste by using new bacterial isolate Gluconacetobacter xylinus C18. Food Sci. Biotechnol. 26, 1019-1028.
    [179]
    Singhania, R.R., Patel, A.K., Tsai, M.L., Chen, C.W., Dong, C.D., 2021. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered 12, 6793-6807.
    [180]
    Skiba, E.A., Budaeva, V.V., Ovchinnikova, E.V., Gladysheva, E.K., Kashcheyeva, E.I., Pavlov, I.N., Sakovich, G.V., 2020. A technology for pilot production of bacterial cellulose from oat hulls. Chem. Eng. J. 383, 123128.
    [181]
    Skočaj, M., 2019. Bacterial nanocellulose in papermaking. Cellulose 26, 6477-6488.
    [182]
    Soares da Silva, F.A.G., Fernandes, M., Souto, A.P., Ferreira, E.C., Dourado, F., Gama, M., 2019. Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites. Appl. Microbiol. Biotechnol. 103, 9143-9154.
    [183]
    Soemphol, W., Hongsachart, P., Tanamool, V., 2018. Production and characterization of bacterial cellulose produced from agricultural by-product by Gluconacetobacter strains. Mater. Today Proc. 5, 11159-11168.
    [184]
    Song, H.J., Li, H.X., Seo, J.H., Kim, M.J., Kim, S.J., 2009. Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korea. J. Chem. Eng. 26, 141-146.
    [185]
    Souza, E.F., Furtado, M.R., Carvalho, C.W.P., Freitas-Silva, O., Gottschalk, L.M.F., 2020. Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. Int. J. Biol. Macromol. 146, 285-289.
    [186]
    Stepanov, N., Efremenko, E., 2018. “Deceived” concentrated immobilized cells as biocatalyst for intensive bacterial cellulose production from various sources. Catalysts 8, 33.
    [187]
    Su, W., Wang, S., Cao, M., Sun, X., Li, B., Xie, H., Wang, L., Song, C., 2012. Synthesis of bacterial cellulose and the modification of the fermentation medium. J. Nankai Univers. (Nat. Sci.) 45, 50-56.
    [188]
    Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A., 2015. Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol. Adv. 33, 1547-1571.
    [189]
    Suwanposri, A., Yukphan, P., Yamada, Y., Ochaikul, D., 2014. Statistical optimisation of culture conditions for biocellulose production by Komagataeibacter sp. PAP1 using soya bean whey. Maejo Int. J. Sci. Technol. 8, 1-14.
    [190]
    Tabaii, M.J., Emtiazi, G., 2016. Comparison of bacterial cellulose production among different strains and fermented media. Appl. Food Biotechnol. 3, 35-41.
    [191]
    Tang, S., Yang, X., Hong, F., 2012. Production of bacterial cellulose by kombucha. J. Cellul. Sci. Technol. 20, 40-45.
    [192]
    Tang, W.H., Jia, S.R., Jia, Y.Y., Yang, H.J., 2010. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microbiol. Biotechnol. 26, 125-131.
    [193]
    Tanskul, S., Amornthatree, K., Jaturonlak, N., 2013. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr. Polym. 92, 421-428.
    [194]
    Tanskul, S., Damthongsen, T., Jaturonlak, N., 2018. A medium supplemented with vegetable extract used for cellulose production of Rhodococcus SP. MI 2. Biosci. J., 666-673.
    [195]
    Torres, F.G., Troncoso, O.P., Gonzales, K.N., Sari, R.M., Gea, S., 2020. Bacterial cellulose-based biosensors. Med. Dev. Sens. 3, e10102.
    [196]
    Tranfield, D., Denyer, D., Smart, P., 2003. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 14, 207-222.
    [197]
    Trovatti, E., Serafim, L.S., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., 2011. Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr. Polym. 86, 1417-1420.
    [198]
    Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., Koutinas, A., 2015. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832-14849.
    [199]
    Tsouko, E., Maina, S., Ladakis, D., Kookos, I.K., Koutinas, A., 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew. Energy 160, 944-954.
    [200]
    Tyagi, N., Suresh, S., 2016. Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization and characterization. J. Clean. Prod. 112, 71-80.
    [201]
    Ul-Islam, M., 2019. Comparative synthesis and characterization of bio-cellulose from local waste and cheap resources. Curr. Pharm. Des. 25, 3664-3671.
    [202]
    Urbina, L., Hernández-Arriaga, A.M., Eceiza, A., Gabilondo, N., Corcuera, M.A., Prieto, M.A., Retegi, A., 2017. By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose 24, 2071-2082.
    [203]
    Uzyol, H.K., Saçan, M.T., 2017. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ. Sci. Pollut. Res. Int. 24, 11154-11162.
    [204]
    Vazquez, A., Foresti, M.L., Cerrutti, P., Galvagno, M., 2013. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21, 545-554.
    [205]
    Velmurugan, P., Myung, H., Govarthanan, M., Yi, Y.J., Seo, S.K., Cho, K.M., Lovanh, N., Oh, B.T., 2015. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida. Biotechnol. Bioprocess Eng. 20, 410-416.
    [206]
    Voon, W.W.Y., Muhialdin, B.J., Yusof, N.L., Rukayadi, Y., Meor Hussin, A.S., 2019. Bio-cellulose production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in sago by-product medium. Appl. Biochem. Biotechnol. 187, 211-220.
    [207]
    Wang, J., Tavakoli, J., Tang, Y.H., 2019. Bacterial cellulose production, properties and applications with different culture methods: a review. Carbohydr. Polym. 219, 63-76.
    [208]
    Wang, Q., Tian, D., Hu, J.G., Huang, M., Shen, F., Zeng, Y.M., Yang, G., Zhang, Y.Z., He, J.S., 2020. Harvesting bacterial cellulose from kitchen waste to prepare superhydrophobic aerogel for recovering waste cooking oil toward a closed-loop biorefinery. ACS Sustain. Chem. Eng. 8, 13400-13407.
    [209]
    Wang, Y., Jia, J., Hu, Q., Xu, C., Long, Q., Yang, Y., Li, C., Liu, S., 2018. Facilitating effects of natural pre-fermentation of coconut water on bacterial celluose yield. Chin. J. Trop. Crop. 39, 151.
    [210]
    Wu, J.M., Liu, R.H., 2012. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90, 116-121.
    [211]
    Wu, J.M., Liu, R.H., 2013. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 115, 284-290.
    [212]
    Wu, M., Yu, S., Cao, X., Feng, Y., Lin, Q., 2011. Effect of different additive amount of sodium alginate in coconut water culture system on bacterial cellulose produced by Acetobacter xylinum. Fine Chem. 28, 456-460.
    [213]
    Wu, M.K., Chen, W., Hu, J.G., Tian, D., Shen, F., Zeng, Y.M., Yang, G., Zhang, Y.Z., Deng, S.H., 2019. Valorizing kitchen waste through bacterial cellulose production towards a more sustainable biorefinery. Sci. Total Environ. 695, 133898.
    [214]
    Xu, W., Zhang, Y., Fu, X., 2012. Optimization of culture conditions of producing bacterial cellulose utilizing starch wastewater. Sci. Technol. Food Ind. 33, 184-187.
    [215]
    Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., Uryu, M., 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose, J. Mater. Sci. 24, 3141-3145.
    [216]
    Yang, G., Wang, C., 2015. Cost-efficient production of bacterial cellulose by Gluconacetobacter xylinus using rotten fruits as the culture medium. J. Cellul. Sci. Technol. 23, 67-70.
    [217]
    Yang, X.Y., Huang, C., Guo, H.J., Xiong, L., Li, Y.Y., Zhang, H.R., Chen, X.D., 2013a. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J. Appl. Microbiol. 115, 995-1002.
    [218]
    Yang, X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Chen, X.F., Lin, X.Q., Chen, X.D., 2014. Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 54, 268-273.
    [219]
    Yang, X.Y., Huang, C., Guo, H.J., Xiong, L., Luo, J., Wang, B., Lin, X.Q., Chen, X.F., Chen, X.D., 2016. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus. Prep. Biochem. Biotechnol. 46, 39-43.
    [220]
    Yang, Y., Jia, J.J., Xing, J.R., Chen, J.B., Lu, S.M., 2013b. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr. Polym. 92, 2012-2017.
    [221]
    Yang, Y., Tang, W., Xing, J., Zheng, M., Lu, S., 2018. Study on bacterial cellulose production from citrus dregs by intermittent shaking culture. Acta Agriculturae Zhejiangensis 30, 307-313.
    [222]
    Yanti, N.A., Ahmad, S.W., Ambardini, S., Muhiddin, N.H., Sulaiman, L.O.I., 2017. Screening of acetic acid bacteria from pineapple waste for bacterial cellulose production using sago liquid waste. Biosaintifika J. Biol. Biol. Educ. 9, 387.
    [223]
    Yanti, N.A., Ahmad, S.W., Muhiddin, N.H., 2018. Evaluation of inoculum size and fermentation period for bacterial cellulose production from sago liquid waste. J. Phys.: Conf. Ser. 1116, 052076.
    [224]
    Yassine, F., Bassil, N., Flouty, R., Chokr, A., Samrani, A.E., Boiteux, G., Tahchi, M.E., 2016. Culture medium pH influence on Gluconacetobacter physiology: cellulose production rate and yield enhancement in presence of multiple carbon sources. Carbohydr. Polym. 146, 282-291.
    [225]
    Ye, J.B., Zheng, S.S., Zhang, Z., Yang, F., Ma, K., Feng, Y.J., Zheng, J.Q., Mao, D.B., Yang, X.P., 2019. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour. Technol. 274, 518-524.
    [226]
    Yim, S.M., Song, J.E., Kim, H.R., 2017. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process. Biochem. 59, 26-36.
    [227]
    Yin, Y., Ma, J., Ni, C., Cheng, J., Xu, S., 2017. Optimization of bacterial cellulose production by fermented soybean molasses with Komagataeibacter intermedius. Food Sci. 38, 8-16.
    [228]
    Zahan, K.A., Hedzir, M.S.A., Mustapha, M.M., 2017. The potential use of papaya juice as fermentation medium for bacterial cellulose production by Acetobacter xylinum 0416. Pertanika J. Trop. Agric. Sci. 40, 343-350.
    [229]
    Zahan, K.A., Pa'e, N., Muhamad, I.I., 2014. Process parameters for fermentation in a rotary disc reactor for optimum microbial cellulose production using response surface methodology. BioResources 9, 1858-1872.
    [230]
    Zahan, K.A., Pa'e, N., Muhamad, I.I., 2015. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arab. J. Sci. Eng. 40, 1881-1885.
    [231]
    Zahan, K.A., Sani, M.F.M., Pa'e, N., Hui, C.N.C., Muhamad, I.I., 2010. Designing economical production of microbial cellulose from waste using modified bioreactor. CA, USA: Proceedings of the ICPE 2010, San Jose.
    [232]
    Zakaria, J., Nazeri, M.A., 2012. Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. Kuching Sarawak, Malaysia: 5th Engineering Conference, Engineering Towards Change-Empowering Green Solutions.
    [233]
    Zeng, X.B., Small, D.P., Wan, W., 2011. Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr. Polym. 85, 506-513.
    [234]
    Zhang, J.N., Gan, F., Li, Z.X., Lin, D.H., Pan, K.X., 2012. Bacterial cellulose production by fruit juice fermentation. Food Sci. 33(13), 240-243.
    [235]
    Zhang, L., Lu, H., Dai, R., Dai, L., Jiang, X., 2014a. Study on the function of ethanol and organic acid to Acetobacter xylinum synthetic bacterial cellulose. Sci. Technol. Food Ind. 35, 161-165.
    [236]
    Zhang, S., Winestrand, S., Chen, L., Li, D.X., Jönsson, L.J., Hong, F., 2014b. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes. J. Agric. Food Chem. 62, 9792-9799.
    [237]
    Zhang, W., Li, H., Liu, L., Qi, X., 2015. Optimization of medium for bacterial cellulose fermentation with pomace by response surface methodology and property studies of the project. Sci. Technol. Food Ind. 36, 228-233.
    [238]
    Zhao, H.W., Li, J.Y., Zhu, K.L., 2018a. Bacterial Cellulose Production from waste products and fermentation conditions optimization. IOP Conf. Ser.: Mater. Sci. Eng. 394, 022041.
    [239]
    Zhao, H.W., Xia, J., Wang, J.M., Yan, X.F., Wang, C., Lei, T.Z., Xian, M., Zhang, H.B., 2018b. Production of bacterial cellulose using polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnol. Biotechnol. Equip. 32, 350-356.
    [240]
    Zhong, C., Zhang, G.C., Liu, M., Zheng, X.T., Han, P.P., Jia, S.R., 2013. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl. Microbiol. Biotechnol. 97, 6189-6199.
    [241]
    Zhong, C.Y., 2020. Industrial-scale production and applications of bacterial cellulose. Front. Bioeng. Biotechnol. 8, 605374.
    [242]
    Zhou, L., Sun, D., Hu, L., Li, Y., Yang, J., 2007. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum, J. Ind. Microbiol. Biotechnol. 34, 483-489.
    [243]
    Zhu, Q., Feng, Y., Lin, Q., Wu, M., Wei, A., 2010. Biosynthesis of CMC-bacterial cellulose with coconut-water. Fine Chem. 7, 654-658.
    [244]
    Zoghlami, A., Paës, G., 2019. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. 7, 874.
    [245]
    Żywicka, A., Junka, A.F., Szymczyk, P., Chodaczek, G., Grzesiak, J., Sedghizadeh, P.P., Fijałkowski, K., 2018. Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydr. Polym. 199, 294-303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return