Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Phannipha Daisuk, Seiichi Takami, Masaki Honda, Motonobu Goto, Chonlatep Usaku, Artiwan Shotipruk. Liquefied dimethyl ether as alternative extraction solvent for high γ-oryzanol rice bran oil: Systematic HSP theory and experimental evaluation[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 577-591. doi: 10.1016/j.jobab.2024.06.002
Citation: Phannipha Daisuk, Seiichi Takami, Masaki Honda, Motonobu Goto, Chonlatep Usaku, Artiwan Shotipruk. Liquefied dimethyl ether as alternative extraction solvent for high γ-oryzanol rice bran oil: Systematic HSP theory and experimental evaluation[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 577-591. doi: 10.1016/j.jobab.2024.06.002

Liquefied dimethyl ether as alternative extraction solvent for high γ-oryzanol rice bran oil: Systematic HSP theory and experimental evaluation

doi: 10.1016/j.jobab.2024.06.002
More Information
  • Corresponding author: E-mail address: Artiwan.Sh@chula.ac.th (A. Shotipruk)
  • Available Online: 2024-06-28
  • Publish Date: 2024-11-01
  • This study aimed to systematically find an alternative solvent to replace hexane for the extraction of bio-oil with high γ-oryzanol content from rice bran (RB). The selection involved predicting solubility through Hansen solubility theory, experimental validation, determination of suitable extraction conditions, and comparison of oil quality with that of conventional hexane. A wide variety of solvents: subcritical water (SCW), supercritical carbon dioxide (SCCO2), bio-based solvents (alcohols and terpenes), and liquefied dimethyl ether (LDME), were initially assessed for rice bran oil (RBO) and γ-oryzanol solubility using Hansen solubility spheres. Solvents demonstrating high solubility for both RBO and γ-oryzanol, including LDME, ethyl acetate, acetone, and others (alcohols and SCCO2) known for effective vegetable oil extraction, were selected/identified for experimental extraction comparison. Among these, LDME performed better overall, affording greater solubility and requiring less solvent, shorter duration, lower pressure, and no additional co-solvents for equivalent extractions. Optimal conditions for LDME extraction were identified as 30 ℃ with a solvent-to-sample ratio of 10 mL/g and an extraction time of 10 min. Oils extracted with LDME and hexane displayed similar fatty acid compositions and no adverse effects on RB protein and carbohydrate structures after LDME extraction were observed. This study demonstrates LDME as a promising alternative to replace hexane for RBO extraction to further valorize this abundant low-cost RB residue into bio-oil and its γ-oryzanol and de-oil RB co-products.

     

  • Declaration of competing interest
    The authors declare that there are no conflicts of interest.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.06.002
  • loading
  • Arab, F., Alemzadeh, I., Maghsoudi, V., 2011. Determination of antioxidant component and activity of rice bran extract. Sci. Iran. 18, 1402–1406. doi: 10.1016/j.scient.2011.09.014
    Azizi, Z., Rezaeimanesh, M., Tohidian, T., Rahimpour, M.R., 2014. Dimethyl ether: a review of technologies and production challenges. Chem. Eng. Process. Process. Intensif. 82, 150–172. doi: 10.1016/j.cep.2014.06.007
    Bauer, M.C., Kruse, A., 2019. The use of dimethyl ether as an organic extraction solvent for biomass applications in future biorefineries: a user-oriented review. Fuel 254, 115703. doi: 10.1016/j.fuel.2019.115703
    Benito-Román, O., Varona, S., Sanz, M.T., Beltrán, S., 2019. Valorization of rice bran: Modified supercritical CO2 extraction of bioactive compounds. J. Ind. Eng. Chem. 80, 273–282. doi: 10.1016/j.jiec.2019.08.005
    Bessa, L.C.B.A., Ferreira, M.C., Rodrigues, C.E.C., Batista, E.A.C., Meirelles, A.J.A., 2017. Simulation and process design of continuous countercurrent ethanolic extraction of rice bran oil. J. Food Eng. 202, 99–113. doi: 10.1016/j.jfoodeng.2017.01.019
    Bitencourt, R.G., Filho, W.A.R., Paula, J.T., Garmus, T.T., Cabral, F.A., 2016. Solubility of γ-oryzanol in supercritical carbon dioxide and extraction from rice bran. J. Supercrit. Fluid. 107, 196–200. doi: 10.1016/j.supflu.2015.09.009
    Boonnoun, P., Tunyasitikun, P., Clowutimon, W., Shotipruk, A., 2017. Production of free lutein by simultaneous extraction and de-esterification of marigold flowers in liquefied dimethyl ether (DME)–KOH–EtOH mixture. Food Bioprod. Process. 106, 193–200. doi: 10.1016/j.fbp.2017.10.002
    Capellini, M.C., Giacomini, V., Cuevas, M.S., Rodrigues, C.E.C., 2017. Rice bran oil extraction using alcoholic solvents: Physicochemical characterization of oil and protein fraction functionality. Ind. Crops Prod. 104, 133–143. doi: 10.1016/j.indcrop.2017.04.017
    Chandi, G.K., Sogi, D.S., 2007. Functional properties of rice bran protein concentrates. J. Food Eng. 79, 592–597. doi: 10.1016/j.jfoodeng.2006.02.018
    Chang, J., Fu, Y., Luo, Z.Y., 2012. Experimental study for dimethyl ether production from biomass gasification and simulation on dimethyl ether production. Biomass Bioenergy 39, 67–72. doi: 10.1016/j.biombioe.2011.01.044
    Daisuk, P., Shotipruk, A., 2020. Recovery of γ-oryzanol from rice bran oil soapstock derived calcium soap: Consideration of Hansen solubility parameters and preferential extractability in various solvents. LWT 134, 110238. doi: 10.1016/j.lwt.2020.110238
    Daud, N.S.M., Zaidel, D.N.A., Lai, K.S., Khairuddin, N., Jusoh, Y.M.M., Muhamad, I.I., 2018. Crude oil yield and properties of rice bran oil from different varieties as affected by extraction conditions using soxhterm method. Arab. J. Sci. Eng. 43, 6237–6244. doi: 10.1007/s13369-018-3438-1
    de la Peña-Gil, A., Toro-Vazquez, J.F., Rogers, M.A., 2016. Simplifying Hansen solubility parameters for complex edible fats and oils. Food Biophys. 11, 283–291. doi: 10.1007/s11483-016-9440-9
    Djordjević, M., Djordjević, M., Maravić, N., Teofilović, V., Šoronja-Simović, D., Šereš, Z., 2023. Processing of alfalfa seeds by convective hot air drying, vacuum drying and germination: Proximate composition, techno-functional, thermal and structural properties evaluation. Food Chem. 402, 134300. doi: 10.1016/j.foodchem.2022.134300
    Ebnesajjad, S., 2015. Chemical Properties of Fluoropolymers: Polytetrafluoroethylene and Polychlorotrifluoroethylene. Fluoroplastics. Elsevier, Amsterdam, pp. 382–395.
    Eghbali Babadi, F., Boonnoun, P., Nootong, K., Powtongsook, S., Goto, M., Shotipruk, A., 2020. Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food Bioprod. Process. 123, 296–303. doi: 10.1016/j.fbp.2020.07.008
    Fang, Y.Z., Gu, S.Q., Liu, S.L., Zhang, J.Y., Ding, Y.T., Liu, J.H., 2018. Extraction of oil from high-moisture tuna liver by subcritical dimethyl ether: feasibility and optimization by the response surface method. RSC Adv. 8, 2723–2732. doi: 10.1039/C7RA12948C
    Food and Agriculture Organization Statistics, 2019. Food and Agriculture Organization of the United Nations. Italy: Rome.
    Fraterrigo Garofalo, S., Demichelis, F., Mancini, G., Tommasi, T., Fino, D., 2022. Conventional and ultrasound-assisted extraction of rice bran oil with isopropanol as solvent. Sustain. Chem. Pharm. 29, 100741. doi: 10.1016/j.scp.2022.100741
    Fraterrigo Garofalo, S., Tommasi, T., Fino, D., 2021. A short review of green extraction technologies for rice bran oil. Biomass Convers. Biorefin. 11, 569–587. doi: 10.1007/s13399-020-00846-3
    Gasparetto, H., de Castilhos, F., Salau, N.P.G., 2023. Screening, experimental data, and robust kinetic modeling of vegetable oil extraction using p-cymene as a neoteric solvent for n-hexane replacement. J. Clean. Prod. 392, 136336. doi: 10.1016/j.jclepro.2023.136336
    Hansen, C.M., 2007. Hansen Solubility Parameters: A User’s Handbook, Second Edition. CRC Press, Boca Raton.
    Hara, Y., Kikuchi, A., Noriyasu, A., Furukawa, H., Takaichi, H., Inokuchi, R., Bouteau, F., Chin, S., Li, X.H., Nishihama, S., Yoshizuka, K., Kawano, T., 2016. Batch extraction of oil from rice bran with liquefied low temperature dimethyl ether. Solvent Extr. Res. Dev. Jpn. 23, 87–99. doi: 10.15261/serdj.23.87
    Hoang, A.T., Tabatabaei, M., Aghbashlo, M., Carlucci, A.P., Ölçer, A.I., Le, A.T., Ghassemi, A., 2021. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: a review. Renew. Sustain. Energy Rev. 135, 110204. doi: 10.1016/j.rser.2020.110204
    Hu, W.C., Wells, J.H., Shin, T.S., Godber, J.S., 1996. Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran. J. Am. Oil Chem. Soc. 73, 1653–1656. doi: 10.1007/BF02517967
    Imsanguan, P., Roaysubtawee, A., Borirak, R., Pongamphai, S., Douglas, S., Douglas, P.L., 2008. Extraction of α-tocopherol and γ-oryzanol from rice bran. LWT Food Sci. Technol. 41, 1417–1424. doi: 10.1016/j.lwt.2007.08.028
    Irnawati, Riyanto, S., Martono, S., Rohman, A., 2019. Determination of sesame oil, rice bran oil and pumpkin seed oil in ternary mixtures using FTIR spectroscopy and multivariate calibrations. Food Res. 4, 135–142. doi: 10.26656/fr.2017.4(1).260
    Ji, Y., Yang, X.L., Ji, Z., Zhu, L.H., Ma, N.N., Chen, D.J., Jia, X.B., Tang, J.M., Cao, Y.L., 2020. DFT-calculated IR spectrum amide Ⅰ, Ⅱ, and Ⅲ band contributions of N-methylacetamide fine components. ACS Omega 5, 8572–8578. doi: 10.1021/acsomega.9b04421
    Juliano, C., Cossu, M., Alamanni, M.C., Piu, L., 2005. Antioxidant activity of gamma-oryzanol: mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 299, 146–154. doi: 10.1016/j.ijpharm.2005.05.018
    Kalpanadevi, C., Singh, V., Subramanian, R., 2018. Influence of milling on the nutritional composition of bran from different rice varieties. J. Food Sci. Technol. 55, 2259–2269. doi: 10.1007/s13197-018-3143-9
    Kayathi, A., Chakrabarti, P.P., Bonfim-Rocha, L., Cardozo-Filho, L., Bollampalli, A., Jegatheesan, V., 2021. Extraction of γ-Oryzanol from defatted rice bran using supercritical carbon dioxide (SC-CO2): Process optimisation of extract yield, scale-up and economic analysis. Process. Saf. Environ. Prot. 148, 179–188. doi: 10.1016/j.psep.2020.09.067
    Lai, O.M., Jacoby, J.J., Leong, W.F., Lai, W.T., 2019. Nutritional studies of rice bran oil. In: Cheong, L.Z., Xu, X.B. (Eds.), Rice Bran and Rice Bran Oil. AOCS Press, Champaign, pp. 19–54.
    Liu, S.X., Mamidipally, P.K., 2005. Quality comparison of rice bran oil extracted with D-limonene and hexane. Cereal Chem. 82, 209–215. doi: 10.1094/CC-82-0209
    Meedam, A., Usaku, C., Daisuk, P., Shotipruk, A., 2020. Comparative study on physicochemical hydrolysis methods for glycerides removal from rice bran acid oil for subsequent γ-oryzanol recovery. Biomass Convers. Biorefin. 12, 245–252.
    Mitrea, L., Teleky, B.E., Leopold, L.F., Nemes, S.A., Plamada, D., Dulf, F.V., Pop, I.D., Vodnar, D.C., 2022. The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval. J. Food Compos. Anal. 106, 104305. doi: 10.1016/j.jfca.2021.104305
    Nakamura, A., Hara, Y., Kawano, T., 2017. Dewatering and extraction of hydrophilic solutes and essential oils from cryo-preserved lemon peels using liquefied dimethyl ether. Solvent Extr. Res. Dev. Japan 24, 37–45. doi: 10.15261/serdj.24.37
    Pestana-Bauer, V.R., Zambiazi, R.C., Mendonça, C.R.B., Beneito-Cambra, M., Ramis-Ramos, G., 2012. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chem. 134, 1479–1483. doi: 10.1016/j.foodchem.2012.03.059
    Pourali, O., Salak Asghari, F., Yoshida, H., 2009. Simultaneous rice bran oil stabilization and extraction using sub-critical water medium. J. Food Eng. 95, 510–516. doi: 10.1016/j.jfoodeng.2009.06.014
    Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C.R., Abou-Shehada, S., Dunn, P.J., 2016. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 18, 288–296. doi: 10.1039/C5GC01008J
    Punia, S., Kumar, M., Siroha, A.K., Purewal, S.S., 2021. Rice bran oil: emerging trends in extraction, health benefit, and its industrial application. Rice Sci. 28, 217–232. doi: 10.1016/j.rsci.2021.04.002
    Ribas, F.B.T., Gasparetto, H., Salau, N.P.G., 2023. Sustainable extraction of rice bran Oil: Assessing renewable solvents, kinetics, and thermodynamics. Chem. Eng. Res. Des. 197, 342–354. doi: 10.1016/j.cherd.2023.07.047
    Rigo, L.A., Pohlmann, A.R., Guterres, S.S., Ruver Beck, R.C., 2014. Rice bran oil: benefits to health and applications in pharmaceutical formulations. In: Watson, R.R., Preedy, V.R., Zibadi, S. (Eds.), Wheat and Rice in Disease Prevention and Health. Academic Press, San Diego, pp. 311–322.
    Sánchez-Camargo, A.P., Montero, L., Cifuentes, A., Herrero, M., Ibáñez, E., 2016. Application of Hansen solubility approach for the subcritical and supercritical selective extraction of phlorotannins from Cystoseira abies-marina. RSC Adv. 6, 94884–94895. doi: 10.1039/C6RA16862K
    Sayasoonthorn, S., Kaewrueng, S., Patharasathapornkul, P., 2012. Rice bran oil extraction by screw press method: optimum operating settings, oil extraction level and press cake appearance. Rice Sci. 19, 75–78. doi: 10.1016/S1672-6308(12)60024-9
    Seddon, D., 2011. Methanol and dimethyl ether (DME) production from synthesis gas. In: Khan, M. (Ed.), Advances in Clean Hydrocarbon Fuel Processing. Woodhead Publishing, Cambridge, pp. 363–386.
    Sharif, M.K., Butt, M.S., Anjum, F.M., Khan, S.H., 2014. Rice bran: a novel functional ingredient. Crit. Rev. Food Sci. Nutr. 54, 807–816. doi: 10.1080/10408398.2011.608586
    Sharma, N., Sahil, Madhumita, M., Kumar, Y., Prabhakar, P.K., 2023. Ultrasonic modulated rice bran protein concentrate: Induced effects on morphological, functional, rheological, and thermal characteristics. Innov. Food Sci. Emerg. Technol. 85, 103332. doi: 10.1016/j.ifset.2023.103332
    Stefanis, E., Panayiotou, C., 2008. Prediction of Hansen solubility parameters with a new group-contribution method. Int. J. Thermophys. 29, 568–585. doi: 10.1007/s10765-008-0415-z
    Tirado, D.F., Calvo, L., 2019. The Hansen theory to choose the best cosolvent for supercritical CO2 extraction of β-carotene from Dunaliella salina. J. Supercrit. Fluid. 145, 211–218. doi: 10.1016/j.supflu.2018.12.013
    Tomita, K., Machmudah, S., Wahyudiono, Fukuzato, R., Kanda, H., Quitain, A.T., Sasaki, M., Goto, M., 2014. Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration. Sep. Purif. Technol. 125, 319–325. doi: 10.1016/j.seppur.2014.02.008
    Trevisani Juchen, P., Nolasco Araujo, M., Hamerski, F., Corazza, M.L., Pedersen Voll, F.A., 2019. Extraction of parboiled rice bran oil with supercritical CO2 and ethanol as co-solvent: Kinetics and characterization. Ind. Crops Prod. 139, 111506. doi: 10.1016/j.indcrop.2019.111506
    Wang, C.H., Chen, C.R., Wu, J.J., Wang, L.Y., Chang, C. M J., Ho, W.J., 2008. Designing supercritical carbon dioxide extraction of rice bran oil that contain oryzanols using response surface methodology. J. Sep. Sci. 31, 1399–1407. doi: 10.1002/jssc.200700583
    Wang, Q., Oshita, K., Takaoka, M., 2021. Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether. Biotechnol. Biofuel. 14, 17. doi: 10.1080/09645292.2020.1822786
    Wang, S.R., Wang, T.Y., Sun, Y., Cui, Y.J., Yu, G.P., Jiang, L.Z., 2022. Effects of high hydrostatic pressure pretreatment on the functional and structural properties of rice bran protein hydrolysates. Foods 11, 29.
    Wang, Y., 2019. Applications of rice bran oil. In: Cheong, L.Z., Xu, X.B. (Eds.), Rice Bran and Rice Bran Oil. AOCS Press, Champaign, pp. 159–168.
    Williams, L.L., Rubin, J.B., Edwards, H.W., 2004. Calculation of Hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region. Ind. Eng. Chem. Res. 43, 4967–4972. doi: 10.1021/ie0497543
    Wongwaiwech, D., Kamchonemenukool, S., Ho, C.T., Li, S.M., Majai, N., Rungrat, T., Sujipuli, K., Pan, M.H., Weerawatanakorn, M., 2023. Bioactives from crude rice bran oils extracted using green technology. Molecules 28, 2457. doi: 10.3390/molecules28062457
    Xu, Z.M., Godber, J.S., 2000. Comparison of supercritical fluid and solvent extraction methods in extracting γ-oryzanol from rice bran. J. Am. Oil Chem. Soc. 77, 547–551. doi: 10.1007/s11746-000-0087-4
    Xu, Z.M., Godber, J.S., 1999. Purification and identification of components of γ-oryzanol in rice bran oil. J. Agric. Food Chem. 47, 2724–2728. doi: 10.1021/jf981175j
    Yara-Varón, E., Fabiano-Tixier, A.S., Balcells, M., Canela-Garayoa, R., Bily, A., Chemat, F., 2016. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv. 6, 27750–27759. doi: 10.1039/C6RA03016E
    Yoon, S.W., Pyo, Y.G., Lee, J., Lee, J.S., Kim, B.H., Kim, I.H., 2014. Concentrations of tocols and γ-oryzanol compounds in rice bran oil obtained by fractional extraction with supercritical carbon dioxide. J. Oleo Sci. 63, 47–53. doi: 10.5650/jos.ess13144
    Zheng, Q.X., Watanabe, M., 2022. Advances in low-temperature extraction of natural resources using liquefied dimethyl ether. Resour. Chem. Mater. 1, 16–26.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (282) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return