Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Junli Liu, Amir Malvandi, Hao Feng. Comprehensive comparison of cellulose nanocrystal (CNC) drying using multi-frequency ultrasonic technology with selected conventional drying technologies[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 465-485. doi: 10.1016/j.jobab.2024.07.003
Citation: Junli Liu, Amir Malvandi, Hao Feng. Comprehensive comparison of cellulose nanocrystal (CNC) drying using multi-frequency ultrasonic technology with selected conventional drying technologies[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 465-485. doi: 10.1016/j.jobab.2024.07.003

Comprehensive comparison of cellulose nanocrystal (CNC) drying using multi-frequency ultrasonic technology with selected conventional drying technologies

doi: 10.1016/j.jobab.2024.07.003
Funds:

This research was financially supported by theUnited States Department of Energy(grant No.DOE-DE-EE0009125).

  • Available Online: 2024-10-26
  • Publish Date: 2024-07-14
  • Cellulose nanocrystals (CNCs) have garnered increased attention due to their renewable nature, abundant feedstock availbility, and good mechanical properties. However, one of the bottlenecks for its commercial production is the drying process. Because of the low CNC concentrations in suspension after isolation, CNC drying requires the removal of a large amount of water to obtain dry products for the following utilization and saving shipping costs. A novel multi-frequency, multimode, modulated ultrasonic drying technology was developed for CNC drying to improve product quality, reduce energy consumption, and increase production rate. CNCs dried with different drying technologies were characterized by Fourier transform infrared (FT-IR) spectra analysis, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and redispersibility to measure the quality and property changes. Under the same temperature and airflow rate, ultrasonic drying enhanced drying rates, resulting in at least a 50% reduction in drying time compared to hot air drying. The mean particle sizes of CNC from ultrasonic drying changed little with settling time, indicating good redispersibility. In addition, ultrasonic dried CNCs exhibited good stability in aqueous solutions, with the zeta potentials ranging from -35 to -65 mV. Specific energy consumption and CO2emissions of various CNC drying technologies were evaluated. Energy consumption of ultrasonic drying is significantly reduced compared to other drying technologies. Moreover, the potential CO2 emissions of the fully electrified ultrasonic drying could be net zero if renewable electricity is used.

     

  • loading
  • [1]
    Aguiar-Ricardo, A., 2017. Building dry powder formulations using supercritical CO2 spray drying. Curr. Opin. Green Sustain. Chem. 5, 12-16.
    [2]
    Baez, C., Considine, J., Rowlands, R., 2014. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21, 347-356.
    [3]
    Calvino, C., Macke, N., Kato, R., Rowan, S.J., 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 103, 101221.
    [4]
    Camarero Espinosa, S., Kuhnt, T., Foster, E.J., Weder, C., 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223-1230.
    [5]
    Dhali, K., Ghasemlou, M., Daver, F., Cass, P., Adhikari, B., 2021. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 775, 145871.
    [6]
    Díaz, A., Katsarava, R., Puiggalí, J., 2014. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide) S. Int. J. Mol. Sci. 15, 7064-7123.
    [7]
    Greenhouse gas equivalencies calculator. EPA.gov. Last updated March 12, 2024. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.
    [8]
    Ha, J.W., Liu, J.L., Feng, H., Sahinidis, N.V., Seo, H., Siirola, J.J., Na, J., 2024. Ultrasound-based separation of ethanol-water mixtures is economically advantageous and sustainable. Cell Rep. Phys. Sci. 5, 101785.
    [9]
    Han, J.Q., Zhou, C.J., Wu, Y.Q., Liu, F.Y., Wu, Q.L., 2013. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14, 1529-1540.
    [10]
    Hao, W.S., Wang, M.Z., Zhou, F.S., Luo, H.Z., Xie, X., Luo, F.L., Cha, R.T., 2020. A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr. Polym. 243, 116466.
    [11]
    Hult, E.L., Iversen, T., Sugiyama, J., 2003. Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10, 103-110.
    [12]
    Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Rafiq, S., Shah, N.S., 2017. Cellulose-based materials for the removal of heavy metals from wastewater: an overview. ChemBioEng Rev. 4, 240-256.
    [13]
    Kahraman, O., Malvandi, A., Vargas, L., Feng, H., 2021. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 73, 105510.
    [14]
    Kapoor, R., Karabulut, G., Mundada, V., Feng, H., 2024. Unraveling the potential of non-thermal ultrasonic contact drying for enhanced functional and structural attributes of pea protein isolates: a comparative study with spray and freeze-drying methods. Food Chem. 439, 138137.
    [15]
    Kasiri, N., Fathi, M., 2018. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 106, 1023-1031.
    [16]
    Langan, P., Nishiyama, Y., Chanzy, H., 2001. X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2, 410-416.
    [17]
    Lewis, L., 2019. Gelation of Cellulose Nanocrystals. Vancouver: University of British Columbia.
    [18]
    Liu, J.L., Beckerman, J., 2022. Application of sustainable biosorbents from hemp for remediation copper(II)-containing wastewater. J. Environ. Chem. Eng. 10, 107494.
    [19]
    Liu, J., Pearlstein, A.J., Feng, H., 2023a. Ultrasonic separation in bioethanol refining. Chem. Eng. Prog. 119, 24-30.
    [20]
    Liu, J.L., Pearlstein, A.J., Feng, H., 2024. Effects of operating parameters on single-stage ultrasonic separation of ethanol from its aqueous solutions. Sep. Purif. Technol. 353, 128179.
    [21]
    Liu, J.L., Tao, B., 2022a. Fractionation of fatty acid methyl esters via urea inclusion and its application to improve the low-temperature performance of biodiesel. Biofuel Res. J. 9, 1617-1629.
    [22]
    Liu, J.L., Tao, B., 2022b. Thermodynamically predicting liquid/solid phase change of long-chain fatty acid methyl esters (FAMEs) and its application in evaluating the low-temperature performance of biodiesel. J. Taiwan Inst. Chem. Eng. 135, 104384.
    [23]
    Liu, J.L., Tao, B.Y., Feng, H., Mosier, N.S., 2023b. Efficient rapid fractionation of fatty acid methyl esters (FAMEs) through evaporative urea inclusion. Chem. Eng. J. 454, 140266.
    [24]
    Liu, J.L., Zhang, C.H., Tao, B., Beckerman, J., 2023c. Revealing the roles of biomass components in the biosorption of heavy metals in wastewater by various chemically treated hemp stalks. J. Taiwan Inst. Chem. Eng. 143, 104701.
    [25]
    Liu, J., Tao, B.Y., 2024. Thermodynamic modeling of urea inclusion fractionation. U.S. Patent Publication # 20240233884. https://patents.justia.com/patent/20240233884.
    [26]
    Lu, P., Yang, Y., Liu, R., Liu, X., Ma, J.X., Wu, M., Wang, S.F., 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 249, 116831.
    [27]
    Luzi, F., Fortunati, E., Giovanale, G., Mazzaglia, A., Torre, L., Balestra, G.M., 2017. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int. J. Biol. Macromol. 104, 43-55.
    [28]
    Malvandi, A., Nicole Coleman, D., Loor, J.J., Feng, H., 2022. A novel sub-pilot-scale direct-contact ultrasonic dehydration technology for sustainable production of distillers dried grains (DDG). Ultrason. Sonochem. 85, 105982.
    [29]
    Meirelles, A.A.D., Costa, A.L.R., Cunha, R.L., 2020. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol. 158, 75-84.
    [30]
    Mohamed, M.A., Abd Mutalib, M., Mohd Hir, Z.A., M Zain, M.F., Mohamad, A.B., Jeffery Minggu, L., Awang, N.A., W Salleh, W.N., 2017. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232-1256.
    [31]
    Naidu, H., Liu, J.L., Kahraman, O., Feng, H., 2021. Ultrasound-assisted nonthermal, nonequilibrium separation of organic molecules from their binary aqueous solutions: effect of solute properties on separation. ACS Sustainable Chem. Eng. 9, 16506-16518.
    [32]
    Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10.
    [33]
    Peng, Y.C., Gardner, D., 2012. Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci. 44, 448-461.
    [34]
    Peng, Y.C., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z.Y., Tshabalala, M.A., 2013. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20, 2379-2392.
    [35]
    Ribeiro, R.S.A., Pohlmann, B.C., Calado, V., Bojorge, N., Pereira, N., 2019. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng. Life Sci. 19, 279-291.
    [36]
    Rotaru, R., Savin, M., Tudorachi, N., Peptu, C., Samoila, P., Sacarescu, L., Harabagiu, V., 2018. Ferromagnetic iron oxide-cellulose nanocomposites prepared by ultrasonication. Polym. Chem. 9, 860-868.
    [37]
    Rovera, C., Ghaani, M., Santo, N., Trabattoni, S., Olsson, R.T., Romano, D., Farris, S., 2018. Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustainable Chem. Eng. 6, 7725-7734.
    [38]
    Shi, Z.J., Phillips, G.O., Yang, G., 2013. Nanocellulose electroconductive composites. Nanoscale 5, 3194-3201.
    [39]
    Sinquefield, S., Ciesielski, P.N., Li, K., Gardner, D.J., Ozcan, S., 2020. Nanocellulose dewatering and drying: current state and future perspectives. ACS Sustainable Chem. Eng. 8, 9601-9615.
    [40]
    Smyth, M., García, A., Rader, C., Foster, E.J., Bras, J., 2017. Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind. Crops Prod. 108, 257-266.
    [41]
    Souza, A.G., Ferreira, R.R., Paula, L.C., Mitra, S.K., Rosa, D.S., 2021. Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag. Shelf Life 27, 100615.
    [42]
    Sridevi, S., Ramya, S., Akshaikumar, K., Kavitha, L., Manoravi, P., Gopi, D., 2020. Fabrication of zinc substituted hydroxyapatite/cellulose nano crystals biocomposite from biowaste materials for biomedical applications. Mater. Today Proc. 26, 3583-3587.
    [43]
    Tao, B.Y., Liu, J., 2015. Method of modeling cloud point of a mixture of fatty acid methyl esters using a modified UNIFAC model and a system therefor. U.S. Patent 9 026 421. https://patents.justia.com/patent/9026421.
    [44]
    Wang, X.Y., Zhang, Y., Jiang, H., Song, Y.X., Zhou, Z.B., Zhao, H., 2016. Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater. Lett. 183, 179-182.
    [45]
    Zheng, T., Pilla, S., 2020. Melt processing of cellulose nanocrystal-filled composites: toward reinforcement and foam nucleation. Ind. Eng. Chem. Res. 59, 8511-8531.
    [46]
    Zimmermann, M.V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A.J., Santana, R.M., 2016. Drying techniques applied to cellulose nanofibers. J. Reinf. Plast. Compos. 35, 682-697.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return