Citation: | Junli Liu, Amir Malvandi, Hao Feng. Comprehensive comparison of cellulose nanocrystal (CNC) drying using multi-frequency ultrasonic technology with selected conventional drying technologies[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 465-485. doi: 10.1016/j.jobab.2024.07.003 |
[1] |
Aguiar-Ricardo, A., 2017. Building dry powder formulations using supercritical CO2 spray drying. Curr. Opin. Green Sustain. Chem. 5, 12-16.
|
[2] |
Baez, C., Considine, J., Rowlands, R., 2014. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21, 347-356.
|
[3] |
Calvino, C., Macke, N., Kato, R., Rowan, S.J., 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 103, 101221.
|
[4] |
Camarero Espinosa, S., Kuhnt, T., Foster, E.J., Weder, C., 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223-1230.
|
[5] |
Dhali, K., Ghasemlou, M., Daver, F., Cass, P., Adhikari, B., 2021. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 775, 145871.
|
[6] |
Díaz, A., Katsarava, R., Puiggalí, J., 2014. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide) S. Int. J. Mol. Sci. 15, 7064-7123.
|
[7] |
Greenhouse gas equivalencies calculator. EPA.gov. Last updated March 12, 2024. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.
|
[8] |
Ha, J.W., Liu, J.L., Feng, H., Sahinidis, N.V., Seo, H., Siirola, J.J., Na, J., 2024. Ultrasound-based separation of ethanol-water mixtures is economically advantageous and sustainable. Cell Rep. Phys. Sci. 5, 101785.
|
[9] |
Han, J.Q., Zhou, C.J., Wu, Y.Q., Liu, F.Y., Wu, Q.L., 2013. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14, 1529-1540.
|
[10] |
Hao, W.S., Wang, M.Z., Zhou, F.S., Luo, H.Z., Xie, X., Luo, F.L., Cha, R.T., 2020. A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr. Polym. 243, 116466.
|
[11] |
Hult, E.L., Iversen, T., Sugiyama, J., 2003. Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10, 103-110.
|
[12] |
Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Rafiq, S., Shah, N.S., 2017. Cellulose-based materials for the removal of heavy metals from wastewater: an overview. ChemBioEng Rev. 4, 240-256.
|
[13] |
Kahraman, O., Malvandi, A., Vargas, L., Feng, H., 2021. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 73, 105510.
|
[14] |
Kapoor, R., Karabulut, G., Mundada, V., Feng, H., 2024. Unraveling the potential of non-thermal ultrasonic contact drying for enhanced functional and structural attributes of pea protein isolates: a comparative study with spray and freeze-drying methods. Food Chem. 439, 138137.
|
[15] |
Kasiri, N., Fathi, M., 2018. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 106, 1023-1031.
|
[16] |
Langan, P., Nishiyama, Y., Chanzy, H., 2001. X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2, 410-416.
|
[17] |
Lewis, L., 2019. Gelation of Cellulose Nanocrystals. Vancouver: University of British Columbia.
|
[18] |
Liu, J.L., Beckerman, J., 2022. Application of sustainable biosorbents from hemp for remediation copper(II)-containing wastewater. J. Environ. Chem. Eng. 10, 107494.
|
[19] |
Liu, J., Pearlstein, A.J., Feng, H., 2023a. Ultrasonic separation in bioethanol refining. Chem. Eng. Prog. 119, 24-30.
|
[20] |
Liu, J.L., Pearlstein, A.J., Feng, H., 2024. Effects of operating parameters on single-stage ultrasonic separation of ethanol from its aqueous solutions. Sep. Purif. Technol. 353, 128179.
|
[21] |
Liu, J.L., Tao, B., 2022a. Fractionation of fatty acid methyl esters via urea inclusion and its application to improve the low-temperature performance of biodiesel. Biofuel Res. J. 9, 1617-1629.
|
[22] |
Liu, J.L., Tao, B., 2022b. Thermodynamically predicting liquid/solid phase change of long-chain fatty acid methyl esters (FAMEs) and its application in evaluating the low-temperature performance of biodiesel. J. Taiwan Inst. Chem. Eng. 135, 104384.
|
[23] |
Liu, J.L., Tao, B.Y., Feng, H., Mosier, N.S., 2023b. Efficient rapid fractionation of fatty acid methyl esters (FAMEs) through evaporative urea inclusion. Chem. Eng. J. 454, 140266.
|
[24] |
Liu, J.L., Zhang, C.H., Tao, B., Beckerman, J., 2023c. Revealing the roles of biomass components in the biosorption of heavy metals in wastewater by various chemically treated hemp stalks. J. Taiwan Inst. Chem. Eng. 143, 104701.
|
[25] |
Liu, J., Tao, B.Y., 2024. Thermodynamic modeling of urea inclusion fractionation. U.S. Patent Publication # 20240233884. https://patents.justia.com/patent/20240233884.
|
[26] |
Lu, P., Yang, Y., Liu, R., Liu, X., Ma, J.X., Wu, M., Wang, S.F., 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 249, 116831.
|
[27] |
Luzi, F., Fortunati, E., Giovanale, G., Mazzaglia, A., Torre, L., Balestra, G.M., 2017. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int. J. Biol. Macromol. 104, 43-55.
|
[28] |
Malvandi, A., Nicole Coleman, D., Loor, J.J., Feng, H., 2022. A novel sub-pilot-scale direct-contact ultrasonic dehydration technology for sustainable production of distillers dried grains (DDG). Ultrason. Sonochem. 85, 105982.
|
[29] |
Meirelles, A.A.D., Costa, A.L.R., Cunha, R.L., 2020. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol. 158, 75-84.
|
[30] |
Mohamed, M.A., Abd Mutalib, M., Mohd Hir, Z.A., M Zain, M.F., Mohamad, A.B., Jeffery Minggu, L., Awang, N.A., W Salleh, W.N., 2017. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232-1256.
|
[31] |
Naidu, H., Liu, J.L., Kahraman, O., Feng, H., 2021. Ultrasound-assisted nonthermal, nonequilibrium separation of organic molecules from their binary aqueous solutions: effect of solute properties on separation. ACS Sustainable Chem. Eng. 9, 16506-16518.
|
[32] |
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10.
|
[33] |
Peng, Y.C., Gardner, D., 2012. Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci. 44, 448-461.
|
[34] |
Peng, Y.C., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z.Y., Tshabalala, M.A., 2013. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20, 2379-2392.
|
[35] |
Ribeiro, R.S.A., Pohlmann, B.C., Calado, V., Bojorge, N., Pereira, N., 2019. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng. Life Sci. 19, 279-291.
|
[36] |
Rotaru, R., Savin, M., Tudorachi, N., Peptu, C., Samoila, P., Sacarescu, L., Harabagiu, V., 2018. Ferromagnetic iron oxide-cellulose nanocomposites prepared by ultrasonication. Polym. Chem. 9, 860-868.
|
[37] |
Rovera, C., Ghaani, M., Santo, N., Trabattoni, S., Olsson, R.T., Romano, D., Farris, S., 2018. Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustainable Chem. Eng. 6, 7725-7734.
|
[38] |
Shi, Z.J., Phillips, G.O., Yang, G., 2013. Nanocellulose electroconductive composites. Nanoscale 5, 3194-3201.
|
[39] |
Sinquefield, S., Ciesielski, P.N., Li, K., Gardner, D.J., Ozcan, S., 2020. Nanocellulose dewatering and drying: current state and future perspectives. ACS Sustainable Chem. Eng. 8, 9601-9615.
|
[40] |
Smyth, M., García, A., Rader, C., Foster, E.J., Bras, J., 2017. Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind. Crops Prod. 108, 257-266.
|
[41] |
Souza, A.G., Ferreira, R.R., Paula, L.C., Mitra, S.K., Rosa, D.S., 2021. Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag. Shelf Life 27, 100615.
|
[42] |
Sridevi, S., Ramya, S., Akshaikumar, K., Kavitha, L., Manoravi, P., Gopi, D., 2020. Fabrication of zinc substituted hydroxyapatite/cellulose nano crystals biocomposite from biowaste materials for biomedical applications. Mater. Today Proc. 26, 3583-3587.
|
[43] |
Tao, B.Y., Liu, J., 2015. Method of modeling cloud point of a mixture of fatty acid methyl esters using a modified UNIFAC model and a system therefor. U.S. Patent 9 026 421. https://patents.justia.com/patent/9026421.
|
[44] |
Wang, X.Y., Zhang, Y., Jiang, H., Song, Y.X., Zhou, Z.B., Zhao, H., 2016. Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater. Lett. 183, 179-182.
|
[45] |
Zheng, T., Pilla, S., 2020. Melt processing of cellulose nanocrystal-filled composites: toward reinforcement and foam nucleation. Ind. Eng. Chem. Res. 59, 8511-8531.
|
[46] |
Zimmermann, M.V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A.J., Santana, R.M., 2016. Drying techniques applied to cellulose nanofibers. J. Reinf. Plast. Compos. 35, 682-697.
|