Citation: | Junli Liu, Amir Malvandi, Hao Feng. Comprehensive comparison of cellulose nanocrystal (CNC) drying using multi-frequency ultrasonic technology with selected conventional drying technologies[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 465-485. doi: 10.1016/j.jobab.2024.07.003 |
Aguiar-Ricardo, A., 2017. Building dry powder formulations using supercritical CO2 spray drying. Curr. Opin. Green Sustain. Chem. 5, 12–16. doi: 10.1016/j.cogsc.2017.03.005
|
Baez, C., Considine, J., Rowlands, R., 2014. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21, 347–356. doi: 10.1007/s10570-013-0159-1
|
Calvino, C., Macke, N., Kato, R., Rowan, S.J., 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 103, 101221. doi: 10.1016/j.progpolymsci.2020.101221
|
Camarero Espinosa, S., Kuhnt, T., Foster, E.J., Weder, C., 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223–1230. doi: 10.1021/bm400219u
|
Dhali, K., Ghasemlou, M., Daver, F., Cass, P., Adhikari, B., 2021. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 775, 145871. doi: 10.1016/j.scitotenv.2021.145871
|
Díaz, A., Katsarava, R., Puiggalí, J., 2014. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)S. Int. J. Mol. Sci. 15, 7064–7123. doi: 10.3390/ijms15057064
|
Greenhouse gas equivalencies calculator. EPA. gov. Last updated March 12, 2024.
|
Ha, J.W., Liu, J.L., Feng, H., Sahinidis, N.V., Seo, H., Siirola, J.J., Na, J., 2024. Ultrasound-based separation of ethanol-water mixtures is economically advantageous and sustainable. Cell Rep. Phys. Sci. 5, 101785. doi: 10.1016/j.xcrp.2024.101785
|
Han, J.Q., Zhou, C.J., Wu, Y.Q., Liu, F.Y., Wu, Q.L., 2013. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14, 1529–1540. doi: 10.1021/bm4001734
|
Hao, W.S., Wang, M.Z., Zhou, F.S., Luo, H.Z., Xie, X., Luo, F.L., Cha, R.T., 2020. A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr. Polym. 243, 116466. doi: 10.1016/j.carbpol.2020.116466
|
Hult, E.L., Iversen, T., Sugiyama, J., 2003. Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10, 103–110. doi: 10.1023/A:1024080700873
|
Jamshaid, A., Hamid, A., Muhammad, N., Naseer, A., Ghauri, M., Iqbal, J., Rafiq, S., Shah, N.S., 2017. Cellulose-based materials for the removal of heavy metals from wastewater: an overview. ChemBioEng Rev. 4, 240–256. doi: 10.1002/cben.201700002
|
Kahraman, O., Malvandi, A., Vargas, L., Feng, H., 2021. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 73, 105510. doi: 10.1016/j.ultsonch.2021.105510
|
Kapoor, R., Karabulut, G., Mundada, V., Feng, H., 2024. Unraveling the potential of non-thermal ultrasonic contact drying for enhanced functional and structural attributes of pea protein isolates: a comparative study with spray and freeze-drying methods. Food Chem. 439, 138137. doi: 10.1016/j.foodchem.2023.138137
|
Kasiri, N., Fathi, M., 2018. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 106, 1023–1031. doi: 10.1016/j.ijbiomac.2017.08.112
|
Langan, P., Nishiyama, Y., Chanzy, H., 2001. X-ray structure of mercerized cellulose Ⅱ at 1 Å resolution. Biomacromolecules 2, 410–416. doi: 10.1021/bm005612q
|
Lewis, L., 2019. Gelation of Cellulose Nanocrystals. University of British Columbia, Vancouver.
|
Liu, J., Beckerman, J., 2022. Application of sustainable biosorbents from hemp for remediation copper(Ⅱ)-containing wastewater. J. Environ. Chem. Eng. 10, 107494. doi: 10.1016/j.jece.2022.107494
|
Liu, J., Pearlstein, A.J., Feng, H., 2023a. Ultrasonic separation in bioethanol refining. Chem. Eng. Prog. 119, 24–30. https://www.aiche-cep.com/cepmagazine/march_2023/MobilePagedArticle.action?articleId=1862433#articleId1862433. https://www.aiche-cep.com/cepmagazine/march_2023/MobilePagedArticle.action?articleId=1862433#articleId1862433
|
Liu, J., Pearlstein, A.J., Feng, H., 2024. Effects of operating parameters on single-stage ultrasonic separation of ethanol from its aqueous solutions. Sep. Purif. Technol. 353, 128179. http://www.nstl.gov.cn/paper_detail.html?id=dc70528daf039193c14aa35a4922ee85
|
Liu, J., Tao, B., 2022a. Fractionation of fatty acid methyl esters via urea inclusion and its application to improve the low-temperature performance of biodiesel. Biofuel Res. J. 9, 1617–1629. doi: 10.18331/brj2022.9.2.3
|
Liu, J., Tao, B., 2022b. Thermodynamically predicting liquid/solid phase change of long-chain fatty acid methyl esters (FAMEs) and its application in evaluating the low-temperature performance of biodiesel. J. Taiwan Inst. Chem. Eng. 135, 104384. doi: 10.1016/j.jtice.2022.104384
|
Liu, J., Tao, B.Y., Feng, H., Mosier, N.S., 2023b. Efficient rapid fractionation of fatty acid methyl esters (FAMEs) through evaporative urea inclusion. Chem. Eng. J. 454, 140266. doi: 10.1016/j.cej.2022.140266
|
Liu, J., Zhang, C., Tao, B., Beckerman, J., 2023c. Revealing the roles of biomass components in the biosorption of heavy metals in wastewater by various chemically treated hemp stalks. J. Taiwan Inst. Chem. Eng. 143, 104701. doi: 10.1016/j.jtice.2023.104701
|
Liu, J., Tao, B.Y., 2024. Thermodynamic modeling of urea inclusion fractionation. U.S. Patent Publication # 20240233884. https://patents.justia.com/patent/20240233884. https://patents.justia.com/patent/20240233884
|
Lu, P., Yang, Y., Liu, R., Liu, X., Ma, J.X., Wu, M., Wang, S.F., 2020. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 249, 116831. doi: 10.1016/j.carbpol.2020.116831
|
Luzi, F., Fortunati, E., Giovanale, G., Mazzaglia, A., Torre, L., Balestra, G.M., 2017. Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int. J. Biol. Macromol. 104, 43–55. doi: 10.1016/j.ijbiomac.2017.05.176
|
Malvandi, A., Nicole Coleman, D., Loor, J.J., Feng, H., 2022. A novel sub-pilot-scale direct-contact ultrasonic dehydration technology for sustainable production of distillers dried grains (DDG). Ultrason. Sonochem. 85, 105982. doi: 10.1016/j.ultsonch.2022.105982
|
Meirelles, A.A.D., Costa, A.L.R., Cunha, R.L., 2020. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol. 158, 75–84. doi: 10.1016/j.ijbiomac.2020.04.185
|
Mohamed, M.A., Abd Mutalib, M., Mohd Hir, Z.A., M Zain, M.F., Mohamad, A.B., Jeffery Minggu, L., Awang, N.A., W Salleh, W.N., 2017. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int. J. Biol. Macromol. 103, 1232–1256. doi: 10.1016/j.ijbiomac.2017.05.181
|
Naidu, H., Liu, J., Kahraman, O., Feng, H., 2021. Ultrasound-assisted nonthermal, nonequilibrium separation of organic molecules from their binary aqueous solutions: effect of solute properties on separation. ACS Sustainable Chem. Eng. 9, 16506–16518. doi: 10.1021/acssuschemeng.1c06793
|
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10. doi: 10.1186/1754-6834-3-10
|
Peng, Y.C., Gardner, D., 2012. Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood Fiber Sci 44, 448–461. doi: 10.1007/s10570-011-9630-z
|
Peng, Y.C., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z.Y., Tshabalala, M.A., 2013. Influence of drying method on the material properties of nanocellulose Ⅰ: thermostability and crystallinity. Cellulose 20, 2379–2392. doi: 10.1007/s10570-013-0019-z
|
Ribeiro, R.S.A., Pohlmann, B.C., Calado, V., Bojorge, N., Pereira, N., 2019. Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng. Life Sci. 19, 279–291. doi: 10.1002/elsc.201800158
|
Rotaru, R., Savin, M., Tudorachi, N., Peptu, C., Samoila, P., Sacarescu, L., Harabagiu, V., 2018. Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polym. Chem. 9, 860–868. doi: 10.1039/c7py01587a
|
Rovera, C., Ghaani, M., Santo, N., Trabattoni, S., Olsson, R.T., Romano, D., Farris, S., 2018. Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustainable Chem. Eng. 6, 7725–7734. doi: 10.1021/acssuschemeng.8b00600
|
Shi, Z.J., Phillips, G.O., Yang, G., 2013. Nanocellulose electroconductive composites. Nanoscale 5, 3194–3201. doi: 10.1039/c3nr00408b
|
Sinquefield, S., Ciesielski, P.N., Li, K., Gardner, D.J., Ozcan, S., 2020. Nanocellulose dewatering and drying: current state and future perspectives. ACS Sustainable Chem. Eng. 8, 9601–9615. doi: 10.1021/acssuschemeng.0c01797
|
Smyth, M., García, A., Rader, C., Foster, E.J., Bras, J., 2017. Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind. Crops Prod. 108, 257–266. doi: 10.1016/j.indcrop.2017.06.006
|
Souza, A.G., Ferreira, R.R., Paula, L.C., Mitra, S.K., Rosa, D.S., 2021. Starch-based films enriched with nanocellulose-stabilized Pickering emulsions containing different essential oils for possible applications in food packaging. Food Packag. Shelf Life 27, 100615. doi: 10.1016/j.fpsl.2020.100615
|
Sridevi, S., Ramya, S., Akshaikumar, K., Kavitha, L., Manoravi, P., Gopi, D., 2020. Fabrication of zinc substituted hydroxyapatite/cellulose nano crystals biocomposite from biowaste materials for biomedical applications. Mater. Today Proc. 26, 3583–3587. doi: 10.1016/j.matpr.2019.08.204
|
Tao, B.Y., Liu, J., 2015. Method of modeling cloud point of a mixture of fatty acid methyl esters using a modified UNIFAC model and a system therefor. U.S. Patent 9 026 421. https://patents.justia.com/patent/9026421. https://patents.justia.com/patent/9026421
|
Wang, X.Y., Zhang, Y., Jiang, H., Song, Y.X., Zhou, Z.B., Zhao, H., 2016. Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater. Lett. 183, 179–182. doi: 10.1016/j.matlet.2016.07.081
|
Zheng, T., Pilla, S., 2020. Melt processing of cellulose nanocrystal-filled composites: toward reinforcement and foam nucleation. Ind. Eng. Chem. Res. 59, 8511–8531. doi: 10.1021/acs.iecr.0c00170
|
Zimmermann, M.V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A.J., Santana, R.M., 2016. Drying techniques applied to cellulose nanofibers. J. Reinf. Plast. Compos. 35, 682–697. doi: 10.1177/0731684415626286
|