Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Guilin Du, Marina Tišma, Beiru He, Xinghui Zhai, Chenyang Yuan, Zhengding Su, Jiping Shi, Baoguo Zhang. Valorization of the Caragana waste via two-stage bioaugmentation: Optimizing nutrition composition, palatability, and microbial contaminant control[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 518-533. doi: 10.1016/j.jobab.2024.07.004
Citation: Guilin Du, Marina Tišma, Beiru He, Xinghui Zhai, Chenyang Yuan, Zhengding Su, Jiping Shi, Baoguo Zhang. Valorization of the Caragana waste via two-stage bioaugmentation: Optimizing nutrition composition, palatability, and microbial contaminant control[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 518-533. doi: 10.1016/j.jobab.2024.07.004

Valorization of the Caragana waste via two-stage bioaugmentation: Optimizing nutrition composition, palatability, and microbial contaminant control

doi: 10.1016/j.jobab.2024.07.004
Funds:

ma would like to thank the Chinese Academy of Sciences for the award of aPresident's International Fellowship Initiative(No.2024PVA0097).

This study was financed by National Key R&D Program of China(No.2017YFE0112700) and Binzhou Institute of Technology(No.GYY-NYHJ-2023-WT-001). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the electronic tongue analysis. Marina Tiš

  • Available Online: 2024-10-26
  • Publish Date: 2024-07-16
  • Caragana korshinskii kom. (CKK) waste, a common forestry byproduct in northwest of China, presents challenges in its transformation into alternative ruminant feed due to its initial nutritional limitations and unappealing palatability. Conventional strategies, such as ensiling and fungal-based solid-state fermentation (SSF) cannot effectively address this issue in practice. Herein, a two-stage bioaugmentation (TBA) process was devised, leveraging the benefits of ensiling and SSF. During the anaerobic ensiling phase, CKK waste was inoculated with Lactiplantibacillus plantarum LP1, effectively suppressing potential animal pathogens such as Aspergillus and Nocardiopsis while enriching the material with potential probiotics like Pediococcus and Lactiplantibacillus, reaching an abundance of 95.7%. In the subsequent aerobic SSF stage, the ensiled CKK underwent inoculation with the white-rot fungus Irpex lacteus F17, which became enriched to 87.9%. Comprehensive multi-omics analysis identified Irpex as the key taxon, possessing an extensive redox enzyme system that led to the improvement in nutrient composition, reduction of astringent phenolic substances, and mitigation of mycotoxins. As a result, the crude protein content of the CKK increased by 39.2%, while lignin, total phenolic substances, and tannic acid content decreased by 24.4%, 52.2%, and 51.4%, respectively. The mycotoxin levels, including aflatoxin B1, zearalenone, and vomitoxin, were rendered negligible, confirming the safety. Overall, this study demonstrates the TBA strategy can successfully transform challenging and unpalatable CKK waste into a nutrient-enriched and safe mycelium-based bioproduct, thereby enabling the valorization of a previously underutilized forestry resource as a promising alternative feed.

     

  • loading
  • [1]
    AOAC, 1990. Official Methods of Analysis (15th edition). In: Kenneth H. (Ed.). Association of Official Analytical Chemists. Virginia: The Association of Official Analytical Chemists, Inc.
    [2]
    Ávila, C.L.S., Carvalho, B.F., 2020. Silage fermentation-updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 128, 966-984.
    [3]
    Bai, B.C., Qiu, R., Wang, Z.J., Liu, Y.C., Bao, J., Sun, L., Liu, T.Y., Ge, G.T., Jia, Y.S., 2023. Effects of cellulase and lactic acid bacteria on ensiling performance and bacterial community of Caragana korshinskii silage. Microorganisms 11, 337.
    [4]
    Bai, B.C., Qiu, R., Sun, L., Bao, J., Liu, Y.C., Ge, G.T., Jia, Y.S., Wang, Z.J., 2024. Effect isolated lactic acid bacteria inoculation on the quality, bacterial composition and metabolic characterization of Caragana korshinskii silage. Chem. Biol. Technol. Agric. 11, 67.
    [5]
    Branà, M.T., Cimmarusti, M.T., Haidukowski, M., Logrieco, A.F., Altomare, C., 2017. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS ONE 12, e0182574.
    [6]
    Bucher, M.G., Zwirzitz, B., Oladeinde, A., Cook, K., Plymel, C., Zock, G., Lakin, S., Aggrey, S.E., Ritz, C., Looft, T., Lipp, E., Agga, G.E., Abdo, Z., Sistani, K.R., 2020. Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg. J. Environ. Qual. 49, 869-881.
    [7]
    Carrillo, J.T., Borthakur, D., 2021. Do uncommon plant phenolic compounds have uncommon properties? a mini review on novel flavonoids. J. Bioresour. Bioprod. 6, 279-291.
    [8]
    Dai, C., Hou, M.Q., Yang, X.D., Wang, Z.F., Sun, C.P., Wu, X., Wang, S.J., 2024. Increased NAD+ levels protect female mouse reproductive system against Zearalenone-impaired glycolysis, lipid metabolism, antioxidant capacity and inflammation. Reprod. Toxicol. 124, 108530.
    [9]
    Drula, E., Garron, M.L., Dogan, S., Lombard, V., Henrissat, B., Terrapon, N., 2022. The carbohydrate-active enzyme database: functions and literature. Nucleic. Acids. Res. 50, D571-D577.
    [10]
    Du, G.L., Shi, J.P., Zhang, J.X., Ma, Z.G., Liu, X.C., Yuan, C.Y., Zhang, B.G., Zhang, Z.Y., Harrison, M.D., 2021a. Exogenous probiotics improve fermentation quality, microflora phenotypes, and trophic modes of fermented vegetable waste for animal feed. Microorganisms 9, 644.
    [11]
    Du, G.L., Zhang, G.L., Shi, J.P., Zhang, J.X., Ma, Z.G., Liu, X.C., Yuan, C.Y., Li, X., Zhang, B.G., 2021b. Keystone taxa Lactiplantibacillus and Lacticaseibacillus directly improve the ensiling performance and microflora profile in co-ensiling cabbage byproduct and rice straw. Microorganisms 9, 1099.
    [12]
    Du, G.L., Zhou, Y., Zhang, J.X., Han, S.W., Liu, X.C., Yuan, C.Y., Ndayisenga, F., Shi, J.P., Zhang, B.G., 2022. Optimized strategy valorizing unautoclaved cottonseed hull as ruminant alternative feeds via solid-state fermentation: detoxifying polyphenols, restraining hazardous microflora and antibiotic-resistance gene hosts. Environ. Technol. Innov. 28, 102937.
    [13]
    Guo, X.S., Xu, D.M., Li, F.H., Bai, J., Su, R.N., 2022. Current approaches on the roles of lactic acid bacteria in crop silage. Microb. Biotechnol. 16, 67-87.
    [14]
    Guo, Y.P., Zhao, L.H., Ma, Q.G., Ji, C., 2021. Novel strategies for degradation of aflatoxins in food and feed: a review. Food Res. Int. 140, 109878.
    [15]
    Ikeda, S., Yamauchi, M., Watari, T., Hatamoto, M., Yamada, M., Maki, S., Hara, H., Yamaguchi, T., 2021. Development of Enokitake (Flammulina velutipes) mushroom cultivation technology using spent mushroom substrate anaerobic digestion residue. Environ. Technol. Innov. 24, 102046.
    [16]
    Ke, W., Wang, Y., Rinne, M., de Oliveira Franco, M., Li, F.H., Lin, Y.F., Zhang, Q., Cai, Y.M., Zhang, G.J., 2023. Effects of lactic acid bacteria and molasses on the fermentation quality, in vitro dry matter digestibility, and microbial community of Korshinsk peashrub (Caragana korshinskii Kom.) silages harvested at two growth stages. Grass Forage Sci. 1-13.
    [17]
    Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E.N., Cremata, J., Sánchez, J.C., 2008. Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals 36, 134-141.
    [18]
    Li, R.R., Zheng, M.L., Zheng, M.H., Cai, R., Cui, X.Y., Wang, Y., Jiang, X., Xu, C.C., 2022. Metagenomic analysis reveals the linkages between bacteria and the functional enzymes responsible for potential ammonia and biogenic amine production in alfalfa silage. J. Appl. Microbiol. 132, 2594-2604.
    [19]
    Liang, X.X., Du, J.J., Zhai, Z.Y., Wang, R.X., Cao, Y.D., Niu, K.M., Wu, X., 2023. Reclamation of the Lianhua-Qingwen residue as functional feed additives processed by a designed precise fermentation. Waste Biomass Valorization 15, 2121-2132.
    [20]
    Liu, M., Zhao, L., Gong, G.X., Zhang, L., Shi, L., Dai, J.F., Han, Y.M., Wu, Y.Y., Khalil, M.M., Sun, L.H., 2022. Invited review: remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 13, 19.
    [21]
    Lou, H.W., Yang, C.M., Gong, Y., Li, Y., Li, Y.H., Tian, S.Q., Zhao, Y., Zhao, R.Y., 2023a. Edible fungi efficiently degrade aflatoxin B1 in cereals and improve their nutritional composition by solid-state fermentation. J. Hazard. Mater. 451, 131139.
    [22]
    Lou, H.W., Yang, C.M., Li, Y.H., Li, Y., Li, Y.J., Zhao, R.Y., 2023b. Optimization of aflatoxin B1 degradation in corn by Ganoderma sinense through solid-state fermentation. LWT 183, 114959.
    [23]
    Luo, R.B., Zhang, Y.D., Wang, F.G., Liu, K.Z., Huang, G.X., Zheng, N., Wang, J.Q., 2021. Effects of sugar cane molasses addition on the fermentation quality, microbial community, and tastes of alfalfa silage. Animals 11, 355.
    [24]
    Manan, S., Ullah, M.W., Ul-Islam, M., Atta, O.M., Yang, G., 2021. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 6, 1-10.
    [25]
    Mannaa, M., Mansour, A., Park, I., Lee, D.W., Seo, Y.S., 2024. Insect-based agri-food waste valorization: agricultural applications and roles of insect gut microbiota. Environ. Sci. Ecotechnol. 17, 100287.
    [26]
    Meng, J., Liu, S.F., Wu, X., 2023. Engineered probiotics as live biotherapeutics for diagnosis and treatment of human diseases. Crit. Rev. Microbiol. 50, 300-314.
    [27]
    Murugesan, K., Srinivasan, K.R., Paramasivam, K., Selvam, A., Wong, J., 2021. Conversion of food waste to animal feeds. Current Developments in Biotechnology and Bioengineering. Amsterdam: Elsevier, 305-324.
    [28]
    Nayan, N., Sonnenberg, A.S.M., Hendriks, W.H., Cone, J.W., 2018. Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed. J. Appl. Microbiol. 125, 468-479.
    [29]
    Nayan, N., Sonnenberg, A.S.M., Hendriks, W.H., Cone, J.W., 2020. Prospects and feasibility of fungal pretreatment of agricultural biomass for ruminant feeding. Anim. Feed. Sci. Technol. 268, 114577.
    [30]
    Niu, D.Z., An, W.Y., Yu, C.Y., Zhu, P., Li, C.Y., Yin, D.M., Zhi, J.Q., Jiang, X.M., Ren, J.J., 2023. Pre-pasteurization enhances the fermentation of wheat straw by Irpex lacteus: chemical composition, enzymatic hydrolysis, and microbial community. Ind. Crops Prod. 202, 116962.
    [31]
    Niu, D.Z., Yu, C.Y., Zheng, M.H., Ren, J.J., Li, C.Y., Xu, C.C., 2022. Effects of ensiling on Irpex lacteus fermentation in wheat straw: chemical composition, in vitro rumen digestibility, and fungal community. Anim. Feed. Sci. Technol. 292, 115433.
    [32]
    Niu, D.Z., Zuo, S.S., Ren, J.J., Huhetaoli, Zheng, M.L., Jiang, D., Xu, C.C., 2019. Novel strategy to improve the colonizing ability of Irpex lacteus in non-sterile wheat straw for enhanced rumen and enzymatic digestibility. Appl. Microbiol. Biotechnol. 104, 1347-1355.
    [33]
    Okoye, C.O., Wang, Y.L., Gao, L., Wu, Y.F., Li, X., Sun, J.Z., Jiang, J.X., 2023. The performance of lactic acid bacteria in silage production: a review of modern biotechnology for silage improvement. Microbiol. Res. 266, 127212.
    [34]
    Pan, C.N., Yang, H.Y., Gao, W.F., Wei, Z.M., Song, C.H., Mi, J.Y., 2024. Optimization of organic solid waste composting process through iron-related additives: a systematic review. J. Environ. Manage. 351, 119952.
    [35]
    Peng, L.C., Yi, J., Yang, X.Y., Xie, J., Chen, C.W., 2023. Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts. J. Bioresour. Bioprod. 8, 78-89.
    [36]
    Pérez-Chávez, A.M., Alberti, M.M., Albertó, E., 2022. Evaluation of ligninolytic activity in spent mushroom substrate from four cultivated mushrooms. J. Bioresour. Bioprod. 7, 288-294.
    [37]
    Pham, V.D., Korver, D.R., Gänzle, M.G., 2023. Conversion of phenolic acids in canola fermentation: impact on antimicrobial activity against Salmonella enterica and Campylobacter jejuni. J. Agric. Food Chem. 71, 2059-2069.
    [38]
    Qin, X., Su, X.Y., Luo, H.Y., Ma, R., Yao, B., Ma, F.Y., 2018. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnol. Biofuels 11, 58.
    [39]
    Qin, X., Sun, X.H., Huang, H.Q., Bai, Y.G., Wang, Y., Luo, H.Y., Yao, B., Zhang, X.Y., Su, X.Y., 2017. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals. Biotechnol. Biofuels 10, 103.
    [40]
    Qin, X., Yang, K., Wang, X.L., Tu, T., Wang, Y., Zhang, J., Su, X.Y., Yao, B., Huang, H.Q., Luo, H.Y., 2023. Insights into the H2O2-driven lytic polysaccharide monooxygenase activity on efficient cellulose degradation in the white rot fungus Irpex lacteus. J. Agric. Food Chem. 71, 8104-8111.
    [41]
    Ren, F.Y., Wu, F., Wu, X., Bao, T.T., Jie, Y.C., Gao, L., 2024. Fungal systems for lignocellulose deconstruction: from enzymatic mechanisms to hydrolysis optimization. GCB Bioenergy 16: e13130.
    [42]
    Ren, Y., Yu, G., Shi, C.P., Liu, L.M., Guo, Q., Han, C., Zhang, D., Zhang, L., Liu, B.X., Gao, H., Zeng, J., Zhou, Y., Qiu, Y.H., Wei, J., Luo, Y.C., Zhu, F.J., Li, X.J., Wu, Q., Li, B., Fu, W.Y., Tong, Y.L., Meng, J., Fang, Y.H., Dong, J., Feng, Y.T., Xie, S.C., Yang, Q.Q., Yang, H., Wang, Y., Zhang, J.B., Gu, H.D., Xuan, H.D., Zou, G.Q., Luo, C., Huang, L., Yang, B., Dong, Y.C., Zhao, J.H., Han, J.C., Zhang, X.L., Huang, H.S., 2022. Majorbio Cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 1, e12.
    [43]
    Scholtmeijer, K., van den Broek, L.A.M., Fischer, A.R.H., van Peer, A., 2023. Potential protein production from lignocellulosic materials using edible mushroom forming fungi. J. Agric. Food Chem. 71, 4450-4457.
    [44]
    Šelo, G., Planinić, M., Tišma, M., Tomas, S., Koceva Komlenić, D., Bucić-Kojić, A., 2021. A comprehensive review on valorization of agro-food industrial residues by solid-state fermentation. Foods 10, 927.
    [45]
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2012. Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP). Available at: http://www.nrel.gov/docs/gen/fy13/42618.pdf.
    [46]
    Tišma, M., Žnidaršič-Plazl, P., Šelo, G., Tolj, I., Šperanda, M., Bucić-Kojić, A., Planinić, M., 2021. Trametes versicolor in lignocellulose-based bioeconomy: state of the art, challenges and opportunities. Bioresour. Technol. 330, 124997.
    [47]
    Tong, S., Chen, W.X., Hong, R.R., Chai, M.D., Sun, Y.X., Wang, Q.H., Li, D.M., 2024. Efficient mycoprotein production with low CO2 emissions through metabolic engineering and fermentation optimization of Fusarium venenatum. J. Agric. Food Chem. 72, 604-612.
    [48]
    van Kuijk, S.J.A., Sonnenberg, A.S.M., Baars, J.J.P., Hendriks, W.H., Cone, J.W., 2015. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnol. Adv. 33, 191-202.
    [49]
    Wang, C., Shi, C.Y., Su, W.F., Jin, M.L., Xu, B.C., Hao, L.H., Zhang, Y., Lu, Z.Q., Wang, F.Q., Wang, Y.Z., Du, H.H., 2020. Dynamics of the physicochemical characteristics, microbiota, and metabolic functions of soybean meal and corn mixed substrates during two-stage solid-state fermentation. mSystems 5, e00501-e00519.
    [50]
    Wang, L.L., Huang, Q., Wu, J., Wu, W.Y., Jiang, J., Yan, H.J., Huang, J.Y., Sun, Y., Deng, Y.Q., 2022a. The metabolism and biotransformation of AFB1: key enzymes and pathways. Biochem. Pharmacol. 199, 115005.
    [51]
    Wang, S.J., Fu, W., Zhao, X.Y., Chang, X.J., Liu, H.J., Zhou, L., Li, J., Cheng, R., Wu, X., Li, X., Sun, C.P., 2022b. Zearalenone disturbs the reproductive-immune axis in pigs: the role of gut microbial metabolites. Microbiome 10, 234.
    [52]
    Wang, X.Q., Huang, X.Y., Zhang, Z.C., Duan, Z.Y., 2022c. Effect of Caragana korshinskii Kom. as a partial substitution for sheep forage on intake, digestibility, growth, carcass features, and the rumen bacterial community. Trop. Anim. Health Prod. 54, 190.
    [53]
    Wang, X.L., Qin, X., Hao, Z.Z., Luo, H.Y., Yao, B., Su, X.Y., 2019. Degradation of four major mycotoxins by eight manganese peroxidases in presence of a dicarboxylic acid. Toxins (Basel) 11, 566.
    [54]
    Xuan, P.X., Ma, H.K., Deng, X.P., Li, Y.F., Tian, J.Q., Li, J.Y., Ma, E.D., Xu, Z.L., Xiao, D., Bezemer, T.M., Wang, M.F., Liu, X.Z., Xiang, M.C., 2024. Microbiome-mediated alleviation of tobacco replant problem via autotoxin degradation after long-term continuous cropping. iMeta 3, e189.
    [55]
    Yang, Z.F., Huang, Z.X., Cao, L.J., 2022. Biotransformation technology and high-value application of rapeseed meal: a review. Bioresour. Bioprocess. 9, 103.
    [56]
    Yao, M.W., Li, W.M., Duan, Z.H., Zhang, Y.L., Jia, R., 2017. Genome sequence of the white-rot fungus Irpex lacteus F17, a type strain of lignin degrader fungus. Stand. Genomic Sci. 12, 55.
    [57]
    Zeko-Pivač, A., Bošnjaković, A., Planinić, M., Parlov Vuković, J., Novak, P., Jednačak, T., Tišma, M., 2022. Improvement of the nutraceutical profile of brewer's spent grain after treatment with Trametes versicolor. Microorganisms 10, 2295.
    [58]
    Zhang, Y.X., Wang, M.S., Usman, S., Li, F.H., Bai, J., Zhang, J.Y., Guo, X.S., 2022. Lignocellulose conversion of ensiled Caragana korshinskii Kom. facilitated by Pediococcus acidilactici and cellulases. Microb. Biotechnol. 16, 432-447.
    [59]
    Zhang, Z.R., Chen, X.Y., Gao, L., 2024. New strategy for the biosynthesis of alternative feed protein: single-cell protein production from straw-based biomass. GCB Bioenergy 16, 2435.
    [60]
    Zhao, L., Zhang, L., Xu, Z.J., Liu, X.D., Chen, L.Y., Dai, J.F., Karrow, N.A., Sun, L.H., 2021. Occurrence of aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018-2020. J. Anim. Sci. Biotechnol. 12, 74.
    [61]
    Zhao, X.L., Wang, F., Fang, Y., Zhou, D.W., Wang, S.P., Wu, D.Q., Wang, L.X., Zhong, R.Z., 2020. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed. Bioresour. Technol. 312, 123512.
    [62]
    Zhong, C., Sun, Z., Zhou, Z., Jin, M.J., Tan, Z.L., Jia, S.R., 2014. Chemical characterization and nutritional analysis of protein isolates from Caragana korshinskii kom. J. Agric. Food Chem. 62, 3217-3222.
    [63]
    Zhou, R., Wang, L.Y., Li, Y.D., Wu, H.H., Lu, L.P., Zang, R.X., Xu, H.W., 2024. Effects of tail vegetable fermented feed on the growth and rumen microbiota of lambs. Animals 14, 303.
    [64]
    Zhu, P., Niu, D.Z., Zhang, S.N., Li, C.Y., Yin, D.M., Zhi, J.Q., Zhang, L.L., Jiang, X.M., Ren, J.J., 2024. Enhanced delignification and production of bioactive compounds in wheat straw by optimizing sterilization methods for Irpex lacteus fermentation. Food Chem. 435, 137570.
    [65]
    Zong, C., Wu, Q.F., Dong, Z.H., Wu, A.L., Wu, J.X., Shao, T., Liu, Q.H., 2022. Recycling deteriorated silage to remove hazardous mycotoxins and produce a value-added product. J. Hazard. Mater. 424, 127627.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return