Citation: | Fatima-Zahra Azar, Achraf El Kasmi, Maria Ángeles Lillo-Ródenas, Maria del Carmen Román-Martínez, Haichao Liu. Selective biomass conversion over novel designed tandem catalyst[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 508-517. doi: 10.1016/j.jobab.2024.09.001 |
[1] |
Adsuar-García, M.D., Flores-Lasluisa, J.X., Azar, F.Z., Román-Martínez, M.C., 2018. Carbon-black-supported Ru catalysts for the valorization of cellulose through hydrolytic hydrogenation. Catalysts 8, 572.
|
[2] |
Adsuar-García, M.D., 2017. Catalizadores bifuncionales Para la hidrogenación hidrolítica de la celulosa. Alicante: Universidad de Alicante.
|
[3] |
Arunajatesan, V., Chen, B.S., Möbus, K., Ostgard, D.J., Tacke, T., Wolf, D., 2008. Carbon-supported catalysts for the chemical industry. Carbon. Mater. Catal. 535-572.
|
[4] |
Auer, E., Freund, A., Pietsch, J., Tacke, T., 1998. Carbons as supports for industrial precious metal catalysts. Appl. Catal. A Gen. 173, 259-271.
|
[5] |
Avolio, R., Bonadies, I., Capitani, D., Errico, M.E., Gentile, G., Avella, M., 2012. A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr. Polym. 87, 265-273.
|
[6] |
Azar, F.Z., 2019. Catalytic conversion of cellulose and biomass into high added-value chemicals using carbon materials and Ru catalysts. Alicante: Universidad de Alicante.
|
[7] |
Azar, F.Z., El Kasmi, A., Cruz Junior, O.F., Lillo-Ródenas, M.Á., del Carmen Román-Martínez, M., 2023. Direct cost-efficient hydrothermal conversion of Amazonian lignocellulosic biomass residue. Biomass Convers. Biorefin. 1-9.
|
[8] |
Azar, F.Z., Lillo-Ródenas, M.Á., Román-Martínez, M.C., 2020. Mesoporous activated carbon supported Ru catalysts to efficiently convert cellulose into sorbitol by hydrolytic hydrogenation. Energies 13, 4394.
|
[9] |
Azar, F.Z., Lillo-Ródenas, M.A., Román-Martínez, M.C., 2019. Cellulose hydrolysis catalysed by mesoporous activated carbons functionalized under mild conditions. SN Appl. Sci. 1, 1739.
|
[10] |
Balasubramanian, S., Venkatachalam, P., 2022. Green synthesis of carbon solid acid catalysts using methane sulfonic acid and its application in the conversion of cellulose to platform chemicals. Cellulose 29, 1509-1526.
|
[11] |
Boehm, H.P., Diehl, E., Heck, W., Sappok, R., 1964. Surface oxides of carbon. Angew. Chem. Int. Ed. 3, 669-677.
|
[12] |
Cano-Serrano, E., Blanco-Brieva, G., Campos-Martin, J.M., Fierro, J.L.G., 2003. Acid-functionalized amorphous silica by chemical grafting-quantitative oxidation of thiol groups. Langmuir 19, 7621-7627.
|
[13] |
Chen, H.Z., 2015. Lignocellulose biorefinery conversion engineering. Lignocellulose Biorefinery Engineering. Amsterdam: Elsevier, 87-124.
|
[14] |
Chheda, J.N., Huber, G.W., Dumesic, J.A., 2007. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed Engl. 46, 7164-7183.
|
[15] |
Chung, P.W., Charmot, A., Gazit, O.M., Katz, A., 2012. Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 28, 15222-15232.
|
[16] |
Climent, M.J., Corma, A., Iborra, S., 2011. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 111, 1072-1133.
|
[17] |
Ernst, M.A., Sloof, W.G., 2008. Unraveling the oxidation of Ru using XPS. Surf. Interface Anal. 40, 334-337.
|
[18] |
Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfão, J.J.M., 1999. Modification of the surface chemistry of activated carbons. Carbon 37, 1379-1389.
|
[19] |
Geboers, J., van de Vyver, S., Carpentier, K., de Blochouse, K., Jacobs, P., Sels, B., 2010. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem. Commun. 46, 3577-3579.
|
[20] |
Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P., Sels, B., 2011. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem. Commun. 47, 5590-5592.
|
[21] |
Gregg S J, Sing, K.S.W., 1999. Adsorption, Surface Area and Porosity. New York: Academic Press 114.
|
[22] |
Han, J.W., Lee, H., 2012. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal. Commun. 19, 115-118.
|
[23] |
He, L.J., Chen, L., Zheng, B.H., Zhou, H., Wang, H., Li, H., Zhang, H., Xu, C.C., Yang, S., 2023. Deep eutectic solvents for catalytic biodiesel production from liquid biomass and upgrading of solid biomass into 5-hydroxymethylfurfural. Green Chem. 25, 7410-7440.
|
[24] |
Huang, H., Denard, C.A., Alamillo, R., Crisci, A.J., Miao, Y.R., Dumesic, J.A., Scott, S.L., Zhao, H.M., 2014. Tandem catalytic conversion of glucose to 5-hydroxymethylfurfural with an immobilized enzyme and a solid acid. ACS Catal. 4, 2165-2168.
|
[25] |
Huang, Y.B., Fu, Y., 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 15, 1095-1111.
|
[26] |
Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497-4559.
|
[27] |
Jofre, F.M., Bordini, F.W., de Andrade Bianchini, I., de Souza Queiroz, S., da Silva Boaes, T., Hernández-Pérez, A.F., das Graças de Almeida Felipe, M., 2022. Xylitol and sorbitol: production routes, challenges and opportunities in biorefineries integration. Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources. Amsterdam: Elsevier, 233-268.
|
[28] |
Kamm, B., Patrick, R. G., Michael, K., 2016. Biorefineries - Industrial Processes and Products. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: John Wiley & Sons, Inc. 1-38.
|
[29] |
Li, H., Fang, Z., Smith, R.L., Yang, S., 2016. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog. Energy Combust. Sci. 55, 98-194.
|
[30] |
Li, N., Ma, X.L., Zha, Q.F., Kim, K., Chen, Y.S., Song, C.S., 2011. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon 49, 5002-5013.
|
[31] |
Machado, B.F., Oubenali, M., Rosa Axet, M., Trang NGuyen, T., Tunckol, M., Girleanu, M., Ersen, O., Gerber, I.C., Serp, P., 2014. Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. J. Catal. 309, 185-198.
|
[32] |
Messou, D., Vivier, L., Especel, C., 2018. Sorbitol transformation into biofuels over bimetallic platinum based catalysts supported on SiO2-Al2O3-Effect of the nature of the second metal. Fuel Process. Technol. 177, 159-169.
|
[33] |
Morgan, D.J., 2015. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072-1079.
|
[34] |
Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I., Mae, K., 2014. Effective production of levulinic acid from biomass through pretreatment using phosphoric acid, hydrochloric acid, or ionic liquid. Ind. Eng. Chem. Res. 53, 11611-11621.
|
[35] |
Negoi, A., Triantafyllidis, K., Parvulescu, V.I., Coman, S.M., 2014. The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catal. Today 223, 122-128.
|
[36] |
Oh, Y.J., Yoo, J.J., Kim, Y.I., Yoon, J.K., Yoon, H.N., Kim, J.H., Bin Park, S., 2014. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 116, 118-128.
|
[37] |
Onda, A., Ochi, T., Yanagisawa, K., 2008. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10, 1033-1037.
|
[38] |
Palkovits, R., Tajvidi, K., Procelewska, J., Rinaldi, R., Ruppert, A., 2010. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chem. 12, 972-978.
|
[39] |
Pang, J.F., Wang, A.Q., Zheng, M.Y., Zhang, T., 2010. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem. Commun. 46, 6935-6937.
|
[40] |
Peng, G., Gramm, F., Ludwig, C., Vogel, F., 2015. Effect of carbon surface functional groups on the synthesis of Ru/C catalysts for supercritical water gasification. Catal. Sci. Technol. 5, 3658-3666.
|
[41] |
Perera, F., 2017. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int. J. Environ. Res. Public Health 15, 16.
|
[42] |
Reyes-Luyanda, D., Flores-Cruz, J., Morales-Pérez, P.J., Encarnación-Gómez, L.G., Shi, F.Y., Voyles, P.M., Cardona-Martínez, N., 2012. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks. Top. Catal. 55, 148-161.
|
[43] |
Ribeiro, L.S., Delgado, J.J., de Melo Órfão, J.J., Pereira, M.F.R., 2017a. Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catal. Today 279, 244-251.
|
[44] |
Ribeiro, L.S., Órfão, J.J.M., Pereira, M.F.R., 2017b. Direct catalytic production of sorbitol from waste cellulosic materials. Bioresour. Technol. 232, 152-158.
|
[45] |
Ribeiro, L.S., Órfão, J.J.M., Pereira, M.F.R., 2015. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem. 17, 2973-2980.
|
[46] |
Rodríguez-Reinoso, F., 1989. Microporous structure of activated carbons as revealed by adsorption methods. In: Thrower, P. (Ed.). Chemistry and Physics of Carbon. New York: Marcel Dekker Inc.
|
[47] |
Sachs, W., Santarius, T., 2014. Fair Future: Resource Conflicts, Security and Global Justice: A Report of the Wuppertal Institute for Climate, Environment and Energy. London: Zed Books.
|
[48] |
Serrano-Ruiz, J.C., Dumesic, J.A., 2011. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci. 4, 83-99.
|
[49] |
Shen, F., Smith, R.L. Jr, Li, L.Y., Yan, L.L., Qi, X.H., 2017. Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst. ACS Sustainable Chem. Eng. 5, 2421-2427.
|
[50] |
Shirai, H., Ikeda, S., Qian, E.W., 2017. One-pot production of 5-hydroxymethylfurfural from cellulose using solid acid catalysts. Fuel Process. Technol. 159, 280-286.
|
[51] |
Shrotri, A., Kobayashi, H., Fukuoka, A., 2018. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res. 51, 761-768.
|
[52] |
Stöcker, M., 2008. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed Engl. 47, 9200-9211.
|
[53] |
Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., 2008. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 130, 12787-12793.
|
[54] |
Suzuki, S., Takeoka, Y., Rikukawa, M., Yoshizawa-Fujita, M., 2018. Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv. 8, 14623-14632.
|
[55] |
Takagaki, A., Takahashi, M., Nishimura, S., Ebitani, K., 2011. One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal. 1, 1562-1565.
|
[56] |
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051-1069.
|
[57] |
Tyufekchiev, M., Duan, P., Schmidt-Rohr, K., Granados Focil, S., Timko, M.T., Emmert, M.H., 2018. Cellulase-inspired solid acids for cellulose hydrolysis: structural explanations for high catalytic activity. ACS Catal. 8, 1464-1468.
|
[58] |
Velo-Gala, I., López-Peñalver, J.J., Sánchez-Polo, M., Rivera-Utrilla, J., 2014. Surface modifications of activated carbon by gamma irradiation. Carbon 67, 236-249.
|
[59] |
Vu, A., Wickramasinghe, S.R., Qian, X.H., 2018. Polymeric solid acid catalysts for lignocellulosic biomass fractionation. Ind. Eng. Chem. Res. 57, 4514-4525.
|
[60] |
Yabushita, M., Kobayashi, H., Fukuoka, A., 2014. Catalytic transformation of cellulose into platform chemicals. Appl. Catal. B Environ. 145, 1-9.
|
[61] |
Yamaguchi, D., Kitano, M., Suganuma, S., Nakajima, K., Kato, H., Hara, M., 2009. Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J. Phys. Chem. C 113, 3181-3188.
|
[62] |
Yan, Q., Wu, X., Jiang, H., Wang, H., Xu, F., Li, H., Zhang, H., Yang, S., 2024. Transition metals-catalyzed amination of biomass feedstocks for sustainable construction of N-heterocycles. Coord. Chem. Rev. 502, 215622.
|
[63] |
Yao, C., Tian, H., Hu, Z.M., Yin, Y.S., Chen, D.L., Yan, X.Z., 2018. Characteristics and kinetics analyses of different genus biomass pyrolysis. Korean J. Chem. Eng. 35, 511-517.
|
[64] |
Yu, F., Zhong, R.Y., Chong, H., Smet, M., Dehaen, W., Sels, B.F., 2017. Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem. 19, 153-163.
|
[65] |
Zhang, J., Li, J.B., Wu, S.B., Liu, Y., 2013. Advances in the catalytic production and utilization of sorbitol. Ind. Eng. Chem. Res. 52, 11799-11815.
|
[66] |
Zheng, B.H., Chen, L., He, L.J., Wang, H., Li, H., Zhang, H., Yang, S., 2024. Facile synthesis of chitosan-derived sulfonated solid acid catalysts for realizing highly effective production of biodiesel. Ind. Crops Prod. 210, 118058.
|
[67] |
Zhou, J.H., Sui, Z.J., Zhu, J., Li, P., Chen, D., Dai, Y.C., Yuan, W.K., 2007. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45, 785-796.
|
[68] |
Zhu, W.W., Yang, H.M., Chen, J.Z., Chen, C., Guo, L., Gan, H.M., Zhao, X.G., Hou, Z.S., 2014. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chem. 16, 1534-1542.
|