Volume 9 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Rosaria Ciriminna, Giuseppe Angellotti, Giovanna Li Petri, Francesco Meneguzzo, Cristina Riccucci, Gabriella Di Carlo, Mario Pagliaro. Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 486-494. doi: 10.1016/j.jobab.2024.09.002
Citation: Rosaria Ciriminna, Giuseppe Angellotti, Giovanna Li Petri, Francesco Meneguzzo, Cristina Riccucci, Gabriella Di Carlo, Mario Pagliaro. Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand[J]. Journal of Bioresources and Bioproducts, 2024, 9(4): 486-494. doi: 10.1016/j.jobab.2024.09.002

Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand

doi: 10.1016/j.jobab.2024.09.002
Funds:

e della Ricerca for funding,Progetto “FutuRaw”, Le materie prime del futuro da fonti non-critiche, residuali e rinnovabili, Fondo Ordinario Enti di Ricerca 2022, CNR(CUPB53C23008390005).

Work of G.L.P. was supported by European Union NextGenerationEU(PNRR-Mission 4 Component 2, Investment 1.3-D.D.1551.11-10-2022,PE00000004) within the MICS (Made in Italy-Circular and Sustainable) Extended Partnership. Work of G.A. was supported by European Union NextGenerationEU(PNRR-Mission 4 Component 2-Investment 1.5(ECS00000022)-CUPB63C22000620005) within the SAMOTHRACE (Sicilian Micro and Nano TechnologyResearch and Innovation Center) Innovation Ecosystem. We thank Ministero dell'Università

  • Available Online: 2024-10-26
  • Publish Date: 2024-09-16
  • Cavitation in water only, no matter whether hydrodynamic or acoustic, is a zero-waste circular economy process to convert industrial citrus processing waste into high-performance polysaccharides in high demand in a single-step at room temperature and ambient pressure using a modest amount of electricity as the only energy input. Following previous reports in which we used hydrodynamic cavitation, we now use an industrial acoustic sonicator to demonstrate the general viability of cavitation to convert biowaste residue of the industrial squeezing of pigmented sweet orange (Citrus sinensis) into highly bioactive “IntegroPectin” pectin and micronized cellulose “CytroCell”. From biomedicine through advanced composite membranes, said biomaterials hold great applicative potential. We conclude discussing the economic and technical feasibility of industrial implementation of the “CytroCav” process.

     

  • loading
  • [1]
    Al Jitan, S., Scurria, A., Albanese, L., Pagliaro, M., Meneguzzo, F., Zabini, F., Al Sakkaf, R., Yusuf, A., Palmisano, G., Ciriminna, R., 2022. Micronized cellulose from Citrus processing waste using water and electricity only. Int. J. Biol. Macromol. 204, 587-592.
    [2]
    Bhattacharjee, S., 2016. DLS and Zeta potential-what they are and what they are not? J. Control. Release 235, 337-351.
    [3]
    Butera, V., Ciriminna, R., Valenza, C., Li Petri, G., Angellotti, G., Barone, G., Meneguzzo, F., Di Liberto, V., Bonura, A., Pagliaro, M., 2024. Citrus IntegroPectin: a computational insight. ChemRxiv: https://doi.org/10.26434/chemrxiv-2024-hs24g.
    [4]
    Capozzi, L., Trout, B.L., Pisano, R., 2019. From batch to continuous: freeze-drying of suspended vials for pharmaceuticals in unit-doses. Ind. Eng. Chem. Res. 58, 1635-1649.
    [5]
    Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M., 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Ultrason. Sonochem. 34, 540-560.
    [6]
    Chemat, F., Vian, M.A., Cravotto, G., 2012. Green extraction of natural products: concept and principles. Int. J. Mol. Sci. 13, 8615-8627.
    [7]
    Cichosz, S., Masek, A., 2020. IR study on cellulose with the varied moisture contents: insight into the supramolecular structure. Materials 13, 4573.
    [8]
    Ciriminna, R., Albanese, L., Meneguzzo, F., Pagliaro, M., 2021. IntegroPectin: a new Citrus pectin with uniquely high biological activity. The 2nd International Electronic Conference on Foods—“Future Foods and Food Technologies for a Sustainable World”. Basel Switzerland: MDPI.
    [9]
    Ciriminna, R., Angellotti, G., Luque, R., Formenti, M., Della Pina, C., Pagliaro, M., 2024. Learning from hype en route to fulfill the industrial potential of nanocellulose. Carbohydr. Polym. Technol. Appl. 7, 100512.
    [10]
    Clements, R.L., 1964. Organic acids in Citrus fruits. I. varietal differencesa. J. Food Sci. 29, 276-280.
    [11]
    Fontananova, E., Ciriminna, R., Talarico, D., Galiano, F., Figoli, A., Di Profio, G., Mancuso, R., Gabriele, B., Angellotti, G., Li Petri, G., Meneguzzo, F., Pagliaro, M., 2024. CytroCell@PIL: a new Citrus nanocellulose-polymeric ionic liquid composite for enhanced anion exchange membrane alkaline water electrolysis. ChemRxiv: https://doi.org/10.26434/chemrxiv-2024-q0xtq.
    [12]
    Gohil, R.M., 2011. Synergistic blends of natural polymers, pectin and sodium alginate. J. Appl. Polym. Sci. 120, 2324-2336.
    [13]
    Khubber, S., Chaturvedi, K., Thakur, N., Sharma, N., Yadav, S.K., 2021. Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocoll. 111, 106240.
    [14]
    Kratchanov, C., Marev, K., Kirchev, N., Bratanoff, A., 1986. Improving pectin technology: extraction using pulsating hydrodynamic action. Int. J. Food Sci. Technol. 21, 751-762.
    [15]
    Krysa, M., Szymańska-Chargot, M., Zdunek, A., 2022. FT-IR and FT-Raman fingerprints of flavonoids-a review. Food Chem. 393, 133430.
    [16]
    Legua, P., Modica, G., Porras, I., Conesa, A., Continella, A., 2022. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. J. Sci. Food Agric. 102, 2960-2971.
    [17]
    Lo Piero, A.R., 2015. The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet oranges (Citrus sinensis) L. osbeck. J. Agric. Food Chem. 63, 4031-4041.
    [18]
    Meneguzzo, F., Brunetti, C., Fidalgo, A., Ciriminna, R., Delisi, R., Albanese, L., Zabini, F., Gori, A., dos Santos Nascimento, L., De Carlo, A., Ferrini, F., Ilharco, L., Pagliaro, M., 2019. Real-scale integral valorization of waste orange peel via hydrodynamic cavitation. Processes 7, 581.
    [19]
    Meneguzzo, F., Ciriminna, R., Zabini, F., Pagliaro, M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. 2020. Processes 8, 549.
    [20]
    Muhidinov, Z.K., Khurshed, I., Ikromi, I., Jonmurodov, A.S., Nasriddinov, A.S., Usmanova, S.R., Bobokalonov, J.T., Strahan, G.D., Liu, L.S., 2021. Structural characterization of pectin obtained by different purification methods, Int. J. Biol. Macromol. 183, 2227-2237.
    [21]
    Nuzzo, D., Cristaldi, L., Sciortino, M., Albanese, L., Scurria, A., Zabini, F., Lino, C., Pagliaro, M., Meneguzzo, F., Di Carlo, M., Ciriminna, R., 2020. Exceptional antioxidant, non-cytotoxic activity of integral lemon pectin from hydrodynamic cavitation. ChemistrySelect 5, 5066-5071.
    [22]
    Nuzzo, D., Picone, P., Giardina, C., Scordino, M., Mudò, G., Pagliaro, M., Scurria, A., Meneguzzo, F., Ilharco, L.M., Fidalgo, A., Alduina, R., Presentato, A., Ciriminna, R., Di Liberto, V., 2021a. New neuroprotective effect of lemon IntegroPectin on neuronal cellular model. Antioxidants 10, 669.
    [23]
    Nuzzo, D., Scordino, M., Scurria, A., Giardina, C., Giordano, F., Meneguzzo, F., Mudò, G., Pagliaro, M., Picone, P., Attanzio, A., Raimondo, S., Ciriminna, R., Di Liberto, V., 2021b. Protective, antioxidant and antiproliferative activity of grapefruit IntegroPectin on SH-SY5Y cells. Int. J. Mol. Sci. 22, 9368.
    [24]
    Nuzzo, D., Scurria, A., Picone, P., Guiducci, A., Pagliaro, M., Pantaleo, G., Albanese, L., Meneguzzo, F., Ciriminna, R., 2022. A gluten-free biscuit fortified with lemon IntegroPectin. ChemistrySelect 7, e202104247.
    [25]
    Panchev, I., Kirchev, N., Kratchanov, C., 1988. Improving pectin technology. Int. J. Food Sci. Technol. 23, 337-341.
    [26]
    Pandit, A.V., Sarvothaman, V.P., Ranade, V.V., 2021. Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics. Ultrason. Sonochem. 77, 105677.
    [27]
    Panwar, D., Panesar, P.S., Chopra, H.K., 2023. Ultrasound-assisted extraction of pectin from Citrus limetta peels: optimization, characterization, and its comparison with commercial pectin. Food Biosci. 51, 102231.
    [28]
    Pfaltzgraff, L.A., De bruyn, M., Cooper, E.C., Budarin, V., Clark, J.H., 2013. Food waste biomass: a resource for high-value chemicals. Green Chem. 15, 307-314.
    [29]
    Piacenza, E., Presentato, A., Alduina, R., Scurria, A., Pagliaro, M., Albanese, L., Meneguzzo, F., Ciriminna, R., Chillura Martino, D.F., 2022. Cross-linked natural IntegroPectin films from Citrus biowaste with intrinsic antimicrobial activity. Cellulose 29, 5779-5802.
    [30]
    Pinjari, D.V., Pandit, A.B., 2010. Cavitation milling of natural cellulose to nanofibrils. Ultrason. Sonochem. 17, 845-852.
    [31]
    Ricci, A., Olejar, K.J., Parpinello, G.P., Kilmartin, P.A., Versari, A., 2015. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 50, 407-442.
    [32]
    Satari, B., Karimi, K., 2018. Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153-167.
    [33]
    Scurria, A., Albanese, L., Pagliaro, M., Zabini, F., Giordano, F., Meneguzzo, F., Ciriminna, R., 2021a. CytroCell: valued cellulose from Citrus processing waste. Molecules 26, 596.
    [34]
    Scurria, A., Sciortino, M., Albanese, L., Nuzzo, D., Zabini, F., Meneguzzo, F., Alduina, R., Presentato, A., Pagliaro, M., Avellone, G., Ciriminna, R., 2021b. Flavonoids in lemon and grapefruit IntegroPectin. ChemistryOpen 10, 1055-1058.
    [35]
    Seisun, D., Zalesny, N., 2021. Strides in food texture and hydrocolloids. Food Hydrocoll. 117, 106575.
    [36]
    Suri, S., Singh, A., Nema, P.K., 2022. Current applications of Citrus fruit processing waste: a scientific outlook. Appl. Food Res. 2, 100050.
    [37]
    Trache, D., Hussin, M.H., Hui Chuin, C.T., Sabar, S., Fazita, M.R., Taiwo, O.F.A., Hassan, T.M., Haafiz, M.K., 2016. Microcrystalline cellulose: isolation, characterization and bio-composites application-a review. Int. J. Biol. Macromol. 93, 789-804.
    [38]
    Wang, W.J., Wu, X.Z., Chantapakul, T., Wang, D.L., Zhang, S., Ma, X.B., Ding, T., Ye, X.Q., Liu, D.H., 2017. Acoustic cavitation assisted extraction of pectin from waste grapefruit peels: a green two-stage approach and its general mechanism. Food Res. Int. 102, 101-110.
    [39]
    Xu, Y.T., Zhang, L.F., Bailina, Y., Ge, Z., Ding, T., Ye, X.Q., Liu, D.H., 2014. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 126, 72-81.
    [40]
    Yao, W.Q., Weng, Y.Y., Catchmark, J.M., 2020. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27, 5563-5579.
    [41]
    Yohana Chaerunisaa, A., Sriwidodo, S., Abdassah, M., 2020. Microcrystalline cellulose as pharmaceutical excipient. Pharmaceutical Formulation Design: Recent Practices. London: IntechOpen.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return