Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
June-Ho Choi, Myeong Rok Ahn, Chae-Hwi Yoon, Yeon-Su Lim, Jong Ryeol Kim, Hyolin Seong, Chan-Duck Jung, Sang-Mook You, Jonghwa Kim, Younghoon Kim, Hyun Gil Cha, Jae-Won Lee, Hoyong Kim. Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 51-61. doi: 10.1016/j.jobab.2024.10.003
Citation: June-Ho Choi, Myeong Rok Ahn, Chae-Hwi Yoon, Yeon-Su Lim, Jong Ryeol Kim, Hyolin Seong, Chan-Duck Jung, Sang-Mook You, Jonghwa Kim, Younghoon Kim, Hyun Gil Cha, Jae-Won Lee, Hoyong Kim. Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 51-61. doi: 10.1016/j.jobab.2024.10.003

Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue

doi: 10.1016/j.jobab.2024.10.003
Funds:

This work was supported by the Korea Research Institute of Chemical Technology (KRICT) Project (No. KS2442-10) and the R&D Program (No. 20017973) of the Ministry of Trade, Industry, and Energy (MOTIE/KEIT).

  • Available Online: 2025-02-21
  • Publish Date: 2024-10-30
  • This study investigated the effects of torrefaction on forest residue (FR) and its subsequent application as a bulk-loading filler in polylactic acid (PLA) composites. Torrefaction enhanced the chemical properties of FR, improving its compatibility with PLA, and the crystallinity increased from 24.9% to 42.5%. The process also improved the hydrophobicity of PLA/biomass composites, as demonstrated by the water contact angle of 76.1°, closely matching that of neat PLA (76.4°). With the introduction of 20% modified biomass properties after torrefaction treatment, the tensile strength of PLA/biomass composite increased from 58.7 to 62.3 MPa. Additionally, the addition of torrefied forest residue (TFR) accelerated biodegradation by increasing the onset of degradation and inhibiting crystallization. After 90 d, the biodegradability of PLA/biomass composites reached 94.9%, which had a 6.9% increase compared to the neat PLA (88.8%). Overall, this study highlights the potential of torrefaction in enhancing both the physical properties and biodegradability of PLA-based composites, contributing to a more sustainable approach to reducing plastic pollution.

     

  • loading
  • [1]
    Abdulyekeen K.A., Umar A.A., Patah M.F.A., Daud W.M.A.W., 2021. Torrefaction of biomass: production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renew. Sustain. Energy Rev. 150, 111436.
    [2]
    Abraham A., Park H., Choi O., Sang B.I., 2021. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production - A review. Bioresour. Technol. 322, 124537.
    [3]
    Adeleke A.A., Odusote J.K., Ikubanni P.P., Lasode O.A., Malathi M., Paswan D., 2021. Essential basics on biomass torrefaction, densification and utilization. Int. J. Energy Res. 45, 1375-1395.
    [4]
    Alvarez-Chavez B.J., Godbout S., Palacios-Rios J.H., Le Roux É., Raghavan V., 2019. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: a critical review. Biomass Bioenergy 128, 105333.
    [5]
    Arteaga-Pérez L.E., Segura C., Bustamante-García V., Gómez Cápiro O., Jiménez R., 2015. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy 93, 1731-1741.
    [6]
    Asadollahzadeh M., Mahboubi A., Taherzadeh M.J., Åkesson D., Lennartsson P.R., 2022. Application of fungal biomass for the development of new polylactic acid-based biocomposites. Polymers 14, 1738.
    [7]
    Awad S., Hamouda T., Midani M., Zhou Y.H., Katsou E., Fan M.Z., 2021. Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite. Ind. Crops Prod. 174, 114172.
    [8]
    Bergmann M., Almroth B.C., Brander S.M., Dey T., Green D.S., Gundogdu S., Krieger A., Wagner M., Walker T.R., 2022. A global plastic treaty must cap production. Science 376, 469-470.
    [9]
    Braghiroli F.L., Passarini L., 2020. Valorization of biomass residues from forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Curr. For. Rep. 6, 172-183.
    [10]
    Cao X.B., Luo Q.L., Song F.Y., Liu G.R., Chen S.Y., Li Y.J., Li X., Lu Y., 2023. Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues. Ind. Crops Prod. 191, 115986.
    [11]
    Cao X.B., Zhang J., Cen K.H., Chen F., Chen D.Y., Li Y.J., 2021. Investigation of the relevance between thermal degradation behavior and physicochemical property of cellulose under different torrefaction severities. Biomass Bioenergy 148, 106061.
    [12]
    Chen W.H., Wang C.W., Ong H.C., Show P.L., Hsieh T.H., 2019. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168.
    [13]
    da Cunha R.B., Pê F.R., de Figueiredo Brito G., de Mélo T.J.A., 2023. Influence of crystallization on the shape memory effect of poly (lactic acid). Smart Mater. Struct. 32, 085016.
    [14]
    Han Y., Shi J.W., Mao L.X., Wang Z., Zhang L.Q., 2020. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer. Ind. Eng. Chem. Res. 59, 21779-21790.
    [15]
    Jaiswal S., Sharma B., Shukla P., 2020. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 17, 100567.
    [16]
    Javanmard A., Abdul Patah M.F., Zulhelmi A., Daud W.M.A.W., 2023. A comprehensive overview of the continuous torrefaction method: operational characteristics, applications, and challenges. J. Energy Inst. 108, 101199.
    [17]
    Ke L., Shang H., Tang M.K., Li X.Y., Jiang L., Lu S.J., Tang D.Y., Huang D.H., Zhu J.T., Liu C.H., Xu H., He X.J., Gao J.F., 2022. High-heat and UV-barrier poly(lactic acid) by microwave-assisted functionalization of waste natural fibers. Int. J. Biol. Macromol. 220, 827-836.
    [18]
    Lateef F.A., Ogunsuyi H.O., 2021. Jatropha curcas L. biomass transformation via torrefaction: surface chemical groups and morphological characterization. Curr. Res. Green Sustain. Chem. 4, 100142.
    [19]
    Li C., Zhu L., Ma Z.Q., Yang Y.Y., Cai W., Ye J.W., Qian J., Liu X.H., Zuo Z.J., 2021. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals. Bioresour. Technol. 321, 124461.
    [20]
    Li X.R., Lin Y., Liu M.L., Meng L.P., Li C.F., 2023. A review of research and application of polylactic acid composites. J. Appl. Polym. Sci. 140, e53477.
    [21]
    Liu G.H., Guan J., Wang X.F., Yu J.Y., Ding B., 2023. Polylactic acid (PLA) melt-blown nonwovens with superior mechanical properties. ACS Sustain. Chem. Eng. 11, 4279-4288.
    [22]
    Luo Y.B., Lin Z.C., Guo G., 2019. Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res. Lett. 14, 56.
    [23]
    Ma P.M., Hristova-Bogaerds D.G., Schmit P., Goossens J.G.P., Lemstra P.J., 2012. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization. Polym. Int. 61, 1284-1293.
    [24]
    Mamunya Y., Levchenko V., Boiteux G., Seytre G., Zanoaga M., Tanasa F., Lebedev E., 2016. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 37, 2467-2477.
    [25]
    Mishra K., Siwal S.S., Sithole T., Singh N., Hart P., Thakur V.K., 2024. Biorenewable materials for water remediation: the central role of cellulose in achieving sustainability. J. Bioresour. Bioprod. 9, 253-282.
    [26]
    Niu Y.Q., Lv Y., Lei Y., Liu S.Q., Liang Y., Wang D.H., Hui S.E., 2019. Biomass torrefaction: properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 115, 109395.
    [27]
    Ong H.C., Yu K.L., Chen W.H., Pillejera M.K., Bi X.T., Tran K.Q., Pétrissans A., Pétrissans M., 2021. Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew. Sustain. Energy Rev. 152, 111698.
    [28]
    Oyebode W.A., Ogunsuyi H.O., 2021. Impact of torrefaction process temperature on the energy content and chemical composition of stool tree (Alstonia congenisis Engl) woody biomass. Curr. Res. Green Sustain. Chem. 4, 100115.
    [29]
    Ozonoh M., Oboirien B.O., Daramola M.O., 2020. Optimization of process variables during torrefaction of coal/biomass/waste tyre blends: application of artificial neural network & response surface methodology. Biomass Bioenergy 143, 105808.
    [30]
    Qi X., Ren Y.W., Wang X.Z., 2017. New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 117, 215-223.
    [31]
    Raj T., Chandrasekhar K., Naresh Kumar A., Kim S.H., 2022. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130.
    [32]
    Ruland W., 1961. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14, 1180-1185.
    [33]
    Ruz-Cruz M.A., Herrera-Franco P.J., Flores-Johnson E.A., Moreno-Chulim M.V., Galera-Manzano L.M., Valadez-González A., 2022. Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. J. Mater. Res. Technol. 18, 485-495.
    [34]
    Shen M.C., Huang W., Chen M., Song B., Zeng G.M., Zhang Y.X., 2020. (micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 254, 120138.
    [35]
    Silva C.G., Campini P.A.L., Rocha D.B., Rosa D.S., 2019. The influence of treated Eucalyptus microfibers on the properties of PLA biocomposites. Compos. Sci. Technol. 179, 54-62.
    [36]
    Stubbins A., Law K.L., Muñoz S.E., Bianchi T.S., Zhu L., 2021. Plastics in the earth system. Science 373, 51-55.
    [37]
    Taib N.A.A.B., Rahman M.R., Huda D., Kuok K.K., Hamdan S., Bakri M.K.B., Julaihi M.R.M.B., Khan A., 2023. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 80, 1179-1213.
    [38]
    Thygesen A., Oddershede J., Lilholt H., Thomsen A.B., Ståhl K., 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12, 563-576.
    [39]
    Tripathi N., Hills C.D., Singh R.S., Atkinson C.J., 2019. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim. Atmos. Sci. 2, 35.
    [40]
    Wang S.R., Dai G.X., Ru B., Zhao Y., Wang X.L., Xiao G., Luo Z.Y., 2017. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 120, 864-871.
    [41]
    Wang W., Ye G.C., Fan D.P., Lu Y., Shi P., Wang X., Bateer B., 2021. Photo-oxidative resistance and adjustable degradation of poly-lactic acid (PLA) obtained by biomass addition and interfacial construction. Polym. Degrad. Stab. 194, 109762.
    [42]
    Wang Z.Z., Xie K., Zhu W.K., Zhang L., Zhao Z., Xu L.F., Yang J.C., Shen B.X., 2022. Effects of oxygen deficient and flue gas torrefaction on the surface property and structural feature of typical agriculture waste: rice husk. Fuel 327, 125211.
    [43]
    Wei Z.Z., Xiong D.Y., Duan P.Z., Ding S.L., Li Y.L., Li L.S., Niu P.R., Chen X.S., 2020. Preparation of carbon-based solid acid catalysts using rice straw biomass and their application in hydration of α-pinene. Catalysts 10, 213.
    [44]
    Xanthos D., Walker T.R., 2017. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar. Pollut. Bull. 118, 17-26.
    [45]
    Xiao L., Wang B., Yang G., Gauthier M., 2012. Poly(lactic acid)-based biomaterials: synthesis, modification and applications. Biomed. Sci. Eng. Technol. 11, 247-282.
    [46]
    Xie D., Liu Z.L., Cao Y.F., Yang S.I., Su C., Li M., 2024. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction. J. Bioresour. Bioprod. 9, 113-125.
    [47]
    Xu Z.X., Li J., Li P.P., Cai C.G., Chen S.T., Ding B.N., Liu S.M., Ge M.S., Jin M.J., 2023. Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution. J. Bioresour. Bioprod. 8, 461-477.
    [48]
    Yang Y., Sun M.M., Zhang M., Zhang K., Wang D.H., Lei C., 2019. A fundamental research on synchronized torrefaction and pelleting of biomass. Renew. Energy 142, 668-676.
    [49]
    Yang Y.Q., Wan H., Wang B.W., Wang B., Chen K., Tan H.Y., Sun C., Zhang Y.H., 2024. Preparation and properties of bamboo fiber/polylactic acid composite modified with polycarbodiimide. Ind. Crops Prod. 218, 118829.
    [50]
    Yu S., Park J., Kim M., Kim H., Ryu C., Lee Y., Yang W., Jeong Y.G., 2019. Improving energy density and grindability of wood pellets by dry torrefaction. Energy Fuels 33, 8632-8639.
    [51]
    Yu Y., Wu J., Ren X.Y., Lau A., Rezaei H., Takada M., Bi X.T., Sokhansanj S., 2022. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review. Renew. Sustain. Energy Rev. 154, 111871.
    [52]
    Zaaba N.F., Jaafar M., 2020. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60, 2061-2075.
    [53]
    Zakaria M.R., Ahmad Farid M.A., Andou Y., Ramli I., Ali Hassan M., 2023. Production of biochar and activated carbon from oil palm biomass: current status, prospects, and challenges. Ind. Crops Prod. 199, 116767.
    [54]
    Zouari M., Devallance D.B., Marrot L., 2022. Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp-polylactic acid (PLA) composites. Materials (Basel) 15, 2271.
    [55]
    Zuo Y., Chen K., Li P., He X., Li W., Wu Y., 2020. Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int. J. Biol. Macromol. 157, 177-186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return