Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
June-Ho Choi, Myeong Rok Ahn, Chae-Hwi Yoon, Yeon-Su Lim, Jong Ryeol Kim, Hyolin Seong, Chan-Duck Jung, Sang-Mook You, Jonghwa Kim, Younghoon Kim, Hyun Gil Cha, Jae-Won Lee, Hoyong Kim. Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 51-61. doi: 10.1016/j.jobab.2024.10.003
Citation: June-Ho Choi, Myeong Rok Ahn, Chae-Hwi Yoon, Yeon-Su Lim, Jong Ryeol Kim, Hyolin Seong, Chan-Duck Jung, Sang-Mook You, Jonghwa Kim, Younghoon Kim, Hyun Gil Cha, Jae-Won Lee, Hoyong Kim. Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 51-61. doi: 10.1016/j.jobab.2024.10.003

Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue

doi: 10.1016/j.jobab.2024.10.003
More Information
  • Corresponding author: E-mail address: hykim03@krict.re.kr (H. Kim)
  • Available Online: 2024-10-30
  • Publish Date: 2025-02-01
  • This study investigated the effects of torrefaction on forest residue (FR) and its subsequent application as a bulk-loading filler in polylactic acid (PLA) composites. Torrefaction enhanced the chemical properties of FR, improving its compatibility with PLA, and the crystallinity increased from 24.9% to 42.5%. The process also improved the hydrophobicity of PLA/biomass composites, as demonstrated by the water contact angle of 76.1°, closely matching that of neat PLA (76.4°). With the introduction of 20% modified biomass properties after torrefaction treatment, the tensile strength of PLA/biomass composite increased from 58.7 to 62.3 MPa. Additionally, the addition of torrefied forest residue (TFR) accelerated biodegradation by increasing the onset of degradation and inhibiting crystallization. After 90 d, the biodegradability of PLA/biomass composites reached 94.9%, which had a 6.9% increase compared to the neat PLA (88.8%). Overall, this study highlights the potential of torrefaction in enhancing both the physical properties and biodegradability of PLA-based composites, contributing to a more sustainable approach to reducing plastic pollution.

     

  • Availability of data
    Data are available on request from the authors.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2024.10.003
  • loading
  • Abdulyekeen, K.A., Umar, A.A., Patah, M.F.A., Daud, W.M.A.W., 2021. Torrefaction of biomass: production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renew. Sustain. Energy Rev. 150, 111436. doi: 10.1016/j.rser.2021.111436
    Abraham, A., Park, H., Choi, O., Sang, B.I., 2021. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production - A review. Bioresour. Technol. 322, 124537. doi: 10.1016/j.biortech.2020.124537
    Adeleke, A.A., Odusote, J.K., Ikubanni, P.P., Lasode, O.A., Malathi, M., Paswan, D., 2021. Essential basics on biomass torrefaction, densification and utilization. Int. J. Energy Res. 45, 1375–1395. doi: 10.1002/er.5884
    Alvarez-Chavez, B.J., Godbout, S., Palacios-Rios, J.H., Le Roux, É., Raghavan, V., 2019. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: a critical review. Biomass Bioenergy 128, 105333. doi: 10.1016/j.biombioe.2019.105333
    Arteaga-Pérez, L.E., Segura, C., Bustamante-García, V., Gómez Cápiro, O., Jiménez, R., 2015. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy 93, 1731–1741. doi: 10.1016/j.energy.2015.10.007
    Asadollahzadeh, M., Mahboubi, A., Taherzadeh, M.J., Åkesson, D., Lennartsson, P.R., 2022. Application of fungal biomass for the development of new polylactic acid-based biocomposites. Polymers 14, 1738. doi: 10.3390/polym14091738
    Awad, S., Hamouda, T., Midani, M., Zhou, Y.H., Katsou, E., Fan, M.Z., 2021. Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite. Ind. Crops Prod. 174, 114172. doi: 10.1016/j.indcrop.2021.114172
    Bergmann, M., Almroth, B.C., Brander, S.M., Dey, T., Green, D.S., Gundogdu, S., Krieger, A., Wagner, M., Walker, T.R., 2022. A global plastic treaty must cap production. Science 376, 469–470. doi: 10.1126/science.abq0082
    Braghiroli, F.L., Passarini, L., 2020. Valorization of biomass residues from forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Curr. For. Rep. 6, 172–183. doi: 10.1007/s40725-020-00112-9
    Cao, X.B., Luo, Q.L., Song, F.Y., Liu, G.R., Chen, S.Y., Li, Y.J., Li, X., Lu, Y., 2023. Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues. Ind. Crops Prod. 191, 115986. doi: 10.1016/j.indcrop.2022.115986
    Cao, X.B., Zhang, J., Cen, K.H., Chen, F., Chen, D.Y., Li, Y.J., 2021. Investigation of the relevance between thermal degradation behavior and physicochemical property of cellulose under different torrefaction severities. Biomass Bioenergy 148, 106061. doi: 10.1016/j.biombioe.2021.106061
    Chen, W.H., Wang, C.W., Ong, H.C., Show, P.L., Hsieh, T.H., 2019. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168. doi: 10.1016/j.fuel.2019.116168
    da Cunha, R.B., Pê, F.R., de Figueiredo Brito, G., de Mélo, T.J.A., 2023. Influence of crystallization on the shape memory effect of poly (lactic acid). Smart Mater. Struct. 32, 085016. doi: 10.1088/1361-665X/ace226
    Han, Y., Shi, J.W., Mao, L.X., Wang, Z., Zhang, L.Q., 2020. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer. Ind. Eng. Chem. Res. 59, 21779–21790. doi: 10.1021/acs.iecr.0c04285
    Jaiswal, S., Sharma, B., Shukla, P., 2020. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 17, 100567. doi: 10.1016/j.eti.2019.100567
    Javanmard, A., Abdul Patah, M.F., Zulhelmi, A., Daud, W.M.A.W., 2023. A comprehensive overview of the continuous torrefaction method: operational characteristics, applications, and challenges. J. Energy Inst. 108, 101199. doi: 10.1016/j.joei.2023.101199
    Ke, L., Shang, H., Tang, M.K., Li, X.Y., Jiang, L., Lu, S.J., Tang, D.Y., Huang, D.H., Zhu, J.T., Liu, C.H., Xu, H., He, X.J., Gao, J.F., 2022. High-heat and UV-barrier poly(lactic acid) by microwave-assisted functionalization of waste natural fibers. Int. J. Biol. Macromol. 220, 827–836. doi: 10.1016/j.ijbiomac.2022.08.114
    Lateef, F.A., Ogunsuyi, H.O., 2021. Jatropha curcas L. biomass transformation via torrefaction: surface chemical groups and morphological characterization. Curr. Res. Green Sustain. Chem. 4, 100142. doi: 10.1016/j.crgsc.2021.100142
    Li, C., Zhu, L., Ma, Z.Q., Yang, Y.Y., Cai, W., Ye, J.W., Qian, J., Liu, X.H., Zuo, Z.J., 2021. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals. Bioresour. Technol. 321, 124461. doi: 10.1016/j.biortech.2020.124461
    Li, X.R., Lin, Y., Liu, M.L., Meng, L.P., Li, C.F., 2023. A review of research and application of polylactic acid composites. J. Appl. Polym. Sci. 140, e53477. doi: 10.1002/app.53477
    Liu, G.H., Guan, J., Wang, X.F., Yu, J.Y., Ding, B., 2023. Polylactic acid (PLA) melt-blown nonwovens with superior mechanical properties. ACS Sustain. Chem. Eng. 11, 4279–4288. doi: 10.1021/acssuschemeng.3c00159
    Luo, Y.B., Lin, Z.C., Guo, G., 2019. Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res. Lett. 14, 56. doi: 10.4324/9780429431777-3
    Ma, P.M., Hristova-Bogaerds, D.G., Schmit, P., Goossens, J.G.P., Lemstra, P.J., 2012. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization. Polym. Int. 61, 1284–1293. doi: 10.1002/pi.4204
    Mamunya, Y., Levchenko, V., Boiteux, G., Seytre, G., Zanoaga, M., Tanasa, F., Lebedev, E., 2016. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 37, 2467–2477. doi: 10.1002/pc.23434
    Mishra, K., Siwal, S.S., Sithole, T., Singh, N., Hart, P., Thakur, V.K., 2024. Biorenewable materials for water remediation: the central role of cellulose in achieving sustainability. J. Bioresour. Bioprod. 9, 253–282.
    Niu, Y.Q., Lv, Y., Lei, Y., Liu, S.Q., Liang, Y., Wang, D.H., Hui, S.E., 2019. Biomass torrefaction: properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 115, 109395. doi: 10.1016/j.rser.2019.109395
    Ong, H.C., Yu, K.L., Chen, W.H., Pillejera, M.K., Bi, X.T., Tran, K.Q., Pétrissans, A., Pétrissans, M., 2021. Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew. Sustain. Energy Rev. 152, 111698. doi: 10.1016/j.rser.2021.111698
    Oyebode, W.A., Ogunsuyi, H.O., 2021. Impact of torrefaction process temperature on the energy content and chemical composition of stool tree (Alstonia congenisis Engl) woody biomass. Curr. Res. Green Sustain. Chem. 4, 100115. doi: 10.1016/j.crgsc.2021.100115
    Ozonoh, M., Oboirien, B.O., Daramola, M.O., 2020. Optimization of process variables during torrefaction of coal/biomass/waste tyre blends: application of artificial neural network & response surface methodology. Biomass Bioenergy 143, 105808. doi: 10.1016/j.biombioe.2020.105808
    Qi, X., Ren, Y.W., Wang, X.Z., 2017. New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 117, 215–223. doi: 10.1016/j.ibiod.2017.01.010
    Raj, T., Chandrasekhar, K., Naresh Kumar, A., Kim, S.H., 2022. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130. doi: 10.1016/j.rser.2022.112130
    Ruland, W., 1961. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14, 1180–1185. doi: 10.1107/S0365110X61003429
    Ruz-Cruz, M.A., Herrera-Franco, P.J., Flores-Johnson, E.A., Moreno-Chulim, M.V., Galera-Manzano, L.M., Valadez-González, A., 2022. Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. J. Mater. Res. Technol. 18, 485–495. doi: 10.1016/j.jmrt.2022.02.072
    Shen, M.C., Huang, W., Chen, M., Song, B., Zeng, G.M., Zhang, Y.X., 2020. micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 254, 120138. doi: 10.1016/j.jclepro.2020.120138
    Silva, C.G., Campini, P.A.L., Rocha, D.B., Rosa, D.S., 2019. The influence of treated Eucalyptus microfibers on the properties of PLA biocomposites. Compos. Sci. Technol. 179, 54–62. doi: 10.18316/rcd.v10i22.3436
    Stubbins, A., Law, K.L., Muñoz, S.E., Bianchi, T.S., Zhu, L., 2021. Plastics in the earth system. Science 373, 51–55. doi: 10.1126/science.abb0354
    Taib, N.A.A.B., Rahman, M.R., Huda, D., Kuok, K.K., Hamdan, S., Bakri, M.K.B., Julaihi, M.R.M.B., Khan, A., 2023. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 80, 1179–1213. doi: 10.1007/s00289-022-04160-y
    Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K., 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12, 563–576. doi: 10.1007/s10570-005-9001-8
    Tripathi, N., Hills, C.D., Singh, R.S., Atkinson, C.J., 2019. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim. Atmos. Sci. 2, 35. doi: 10.1038/s41612-019-0093-5
    Wang, S.R., Dai, G.X., Ru, B., Zhao, Y., Wang, X.L., Xiao, G., Luo, Z.Y., 2017. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 120, 864–871. doi: 10.1016/j.energy.2016.11.135
    Wang, W., Ye, G.C., Fan, D.P., Lu, Y., Shi, P., Wang, X., Bateer, B., 2021. Photo-oxidative resistance and adjustable degradation of poly-lactic acid (PLA) obtained by biomass addition and interfacial construction. Polym. Degrad. Stab. 194, 109762. doi: 10.1016/j.polymdegradstab.2021.109762
    Wang, Z.Z., Xie, K., Zhu, W.K., Zhang, L., Zhao, Z., Xu, L.F., Yang, J.C., Shen, B.X., 2022. Effects of oxygen deficient and flue gas torrefaction on the surface property and structural feature of typical agriculture waste: rice husk. Fuel 327, 125211. doi: 10.1016/j.fuel.2022.125211
    Wei, Z.Z., Xiong, D.Y., Duan, P.Z., Ding, S.L., Li, Y.L., Li, L.S., Niu, P.R., Chen, X.S., 2020. Preparation of carbon-based solid acid catalysts using rice straw biomass and their application in hydration of 𝛼-pinene. Catalysts 10, 213. doi: 10.3390/catal10020213
    Xanthos, D., Walker, T.R., 2017. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar. Pollut. Bull. 118, 17–26. doi: 10.1016/j.marpolbul.2017.02.048
    Xiao, L., Wang, B., Yang, G., Gauthier, M., 2012. Poly(lactic acid)-based biomaterials: synthesis, modification and applications. Biomed. Sci. Eng. Technol. 11, 247–282.
    Xie, D., Liu, Z.L., Cao, Y.F., Yang, S.I., Su, C., Li, M., 2024. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction. J. Bioresour. Bioprod. 9, 113–125.
    Xu, Z.X., Li, J., Li, P.P., Cai, C.G., Chen, S.T., Ding, B.N., Liu, S.M., Ge, M.S., Jin, M.J., 2023. Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution. J. Bioresour. Bioprod. 8, 461–477.
    Yang, Y., Sun, M.M., Zhang, M., Zhang, K., Wang, D.H., Lei, C., 2019. A fundamental research on synchronized torrefaction and pelleting of biomass. Renew. Energy 142, 668–676. doi: 10.1016/j.renene.2019.04.112
    Yang, Y.Q., Wan, H., Wang, B.W., Wang, B., Chen, K., Tan, H.Y., Sun, C., Zhang, Y.H., 2024. Preparation and properties of bamboo fiber/polylactic acid composite modified with polycarbodiimide. Ind. Crops Prod. 218, 118829. doi: 10.1016/j.indcrop.2024.118829
    Yu, S., Park, J., Kim, M., Kim, H., Ryu, C., Lee, Y., Yang, W., Jeong, Y.G., 2019. Improving energy density and grindability of wood pellets by dry torrefaction. Energy Fuels 33, 8632–8639. doi: 10.1021/acs.energyfuels.9b01086
    Yu, Y., Wu, J., Ren, X.Y., Lau, A., Rezaei, H., Takada, M., Bi, X.T., Sokhansanj, S., 2022. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review. Renew. Sustain. Energy Rev. 154, 111871. doi: 10.1016/j.rser.2021.111871
    Zaaba, N.F., Jaafar, M., 2020. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60, 2061–2075. doi: 10.1002/pen.25511
    Zakaria, M.R., Ahmad Farid, M.A., Andou, Y., Ramli, I., Ali Hassan, M., 2023. Production of biochar and activated carbon from oil palm biomass: current status, prospects, and challenges. Ind. Crops Prod. 199, 116767. doi: 10.1016/j.indcrop.2023.116767
    Zouari, M., Devallance, D.B., Marrot, L., 2022. Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp-polylactic acid (PLA) composites. Materials 15, 2271 (Basel). doi: 10.3390/ma15062271
    Zuo, Y., Chen, K., Li, P., He, X., Li, W., Wu, Y., 2020. Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int. J. Biol. Macromol. 157, 177–186. doi: 10.18282/le.v9i6.1336
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (337) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return