| Citation: | June-Ho Choi, Myeong Rok Ahn, Chae-Hwi Yoon, Yeon-Su Lim, Jong Ryeol Kim, Hyolin Seong, Chan-Duck Jung, Sang-Mook You, Jonghwa Kim, Younghoon Kim, Hyun Gil Cha, Jae-Won Lee, Hoyong Kim. Enhancing compatibility and biodegradability of polylactic acid/biomass composites through torrefaction of forest residue[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 51-61. doi: 10.1016/j.jobab.2024.10.003 |
|
Abdulyekeen, K.A., Umar, A.A., Patah, M.F.A., Daud, W.M.A.W., 2021. Torrefaction of biomass: production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renew. Sustain. Energy Rev. 150, 111436. doi: 10.1016/j.rser.2021.111436
|
|
Abraham, A., Park, H., Choi, O., Sang, B.I., 2021. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production - A review. Bioresour. Technol. 322, 124537. doi: 10.1016/j.biortech.2020.124537
|
|
Adeleke, A.A., Odusote, J.K., Ikubanni, P.P., Lasode, O.A., Malathi, M., Paswan, D., 2021. Essential basics on biomass torrefaction, densification and utilization. Int. J. Energy Res. 45, 1375–1395. doi: 10.1002/er.5884
|
|
Alvarez-Chavez, B.J., Godbout, S., Palacios-Rios, J.H., Le Roux, É., Raghavan, V., 2019. Physical, chemical, thermal and biological pre-treatment technologies in fast pyrolysis to maximize bio-oil quality: a critical review. Biomass Bioenergy 128, 105333. doi: 10.1016/j.biombioe.2019.105333
|
|
Arteaga-Pérez, L.E., Segura, C., Bustamante-García, V., Gómez Cápiro, O., Jiménez, R., 2015. Torrefaction of wood and bark from Eucalyptus globulus and Eucalyptus nitens: focus on volatile evolution vs feasible temperatures. Energy 93, 1731–1741. doi: 10.1016/j.energy.2015.10.007
|
|
Asadollahzadeh, M., Mahboubi, A., Taherzadeh, M.J., Åkesson, D., Lennartsson, P.R., 2022. Application of fungal biomass for the development of new polylactic acid-based biocomposites. Polymers 14, 1738. doi: 10.3390/polym14091738
|
|
Awad, S., Hamouda, T., Midani, M., Zhou, Y.H., Katsou, E., Fan, M.Z., 2021. Date palm fibre geometry and its effect on the physical and mechanical properties of recycled polyvinyl chloride composite. Ind. Crops Prod. 174, 114172. doi: 10.1016/j.indcrop.2021.114172
|
|
Bergmann, M., Almroth, B.C., Brander, S.M., Dey, T., Green, D.S., Gundogdu, S., Krieger, A., Wagner, M., Walker, T.R., 2022. A global plastic treaty must cap production. Science 376, 469–470. doi: 10.1126/science.abq0082
|
|
Braghiroli, F.L., Passarini, L., 2020. Valorization of biomass residues from forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Curr. For. Rep. 6, 172–183. doi: 10.1007/s40725-020-00112-9
|
|
Cao, X.B., Luo, Q.L., Song, F.Y., Liu, G.R., Chen, S.Y., Li, Y.J., Li, X., Lu, Y., 2023. Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues. Ind. Crops Prod. 191, 115986. doi: 10.1016/j.indcrop.2022.115986
|
|
Cao, X.B., Zhang, J., Cen, K.H., Chen, F., Chen, D.Y., Li, Y.J., 2021. Investigation of the relevance between thermal degradation behavior and physicochemical property of cellulose under different torrefaction severities. Biomass Bioenergy 148, 106061. doi: 10.1016/j.biombioe.2021.106061
|
|
Chen, W.H., Wang, C.W., Ong, H.C., Show, P.L., Hsieh, T.H., 2019. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 258, 116168. doi: 10.1016/j.fuel.2019.116168
|
|
da Cunha, R.B., Pê, F.R., de Figueiredo Brito, G., de Mélo, T.J.A., 2023. Influence of crystallization on the shape memory effect of poly (lactic acid). Smart Mater. Struct. 32, 085016. doi: 10.1088/1361-665X/ace226
|
|
Han, Y., Shi, J.W., Mao, L.X., Wang, Z., Zhang, L.Q., 2020. Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer. Ind. Eng. Chem. Res. 59, 21779–21790. doi: 10.1021/acs.iecr.0c04285
|
|
Jaiswal, S., Sharma, B., Shukla, P., 2020. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 17, 100567. doi: 10.1016/j.eti.2019.100567
|
|
Javanmard, A., Abdul Patah, M.F., Zulhelmi, A., Daud, W.M.A.W., 2023. A comprehensive overview of the continuous torrefaction method: operational characteristics, applications, and challenges. J. Energy Inst. 108, 101199. doi: 10.1016/j.joei.2023.101199
|
|
Ke, L., Shang, H., Tang, M.K., Li, X.Y., Jiang, L., Lu, S.J., Tang, D.Y., Huang, D.H., Zhu, J.T., Liu, C.H., Xu, H., He, X.J., Gao, J.F., 2022. High-heat and UV-barrier poly(lactic acid) by microwave-assisted functionalization of waste natural fibers. Int. J. Biol. Macromol. 220, 827–836. doi: 10.1016/j.ijbiomac.2022.08.114
|
|
Lateef, F.A., Ogunsuyi, H.O., 2021. Jatropha curcas L. biomass transformation via torrefaction: surface chemical groups and morphological characterization. Curr. Res. Green Sustain. Chem. 4, 100142. doi: 10.1016/j.crgsc.2021.100142
|
|
Li, C., Zhu, L., Ma, Z.Q., Yang, Y.Y., Cai, W., Ye, J.W., Qian, J., Liu, X.H., Zuo, Z.J., 2021. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals. Bioresour. Technol. 321, 124461. doi: 10.1016/j.biortech.2020.124461
|
|
Li, X.R., Lin, Y., Liu, M.L., Meng, L.P., Li, C.F., 2023. A review of research and application of polylactic acid composites. J. Appl. Polym. Sci. 140, e53477. doi: 10.1002/app.53477
|
|
Liu, G.H., Guan, J., Wang, X.F., Yu, J.Y., Ding, B., 2023. Polylactic acid (PLA) melt-blown nonwovens with superior mechanical properties. ACS Sustain. Chem. Eng. 11, 4279–4288. doi: 10.1021/acssuschemeng.3c00159
|
|
Luo, Y.B., Lin, Z.C., Guo, G., 2019. Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res. Lett. 14, 56. doi: 10.4324/9780429431777-3
|
|
Ma, P.M., Hristova-Bogaerds, D.G., Schmit, P., Goossens, J.G.P., Lemstra, P.J., 2012. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)-co-(vinyl acetate)/starch blends via reactive compatibilization. Polym. Int. 61, 1284–1293. doi: 10.1002/pi.4204
|
|
Mamunya, Y., Levchenko, V., Boiteux, G., Seytre, G., Zanoaga, M., Tanasa, F., Lebedev, E., 2016. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 37, 2467–2477. doi: 10.1002/pc.23434
|
|
Mishra, K., Siwal, S.S., Sithole, T., Singh, N., Hart, P., Thakur, V.K., 2024. Biorenewable materials for water remediation: the central role of cellulose in achieving sustainability. J. Bioresour. Bioprod. 9, 253–282.
|
|
Niu, Y.Q., Lv, Y., Lei, Y., Liu, S.Q., Liang, Y., Wang, D.H., Hui, S.E., 2019. Biomass torrefaction: properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 115, 109395. doi: 10.1016/j.rser.2019.109395
|
|
Ong, H.C., Yu, K.L., Chen, W.H., Pillejera, M.K., Bi, X.T., Tran, K.Q., Pétrissans, A., Pétrissans, M., 2021. Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew. Sustain. Energy Rev. 152, 111698. doi: 10.1016/j.rser.2021.111698
|
|
Oyebode, W.A., Ogunsuyi, H.O., 2021. Impact of torrefaction process temperature on the energy content and chemical composition of stool tree (Alstonia congenisis Engl) woody biomass. Curr. Res. Green Sustain. Chem. 4, 100115. doi: 10.1016/j.crgsc.2021.100115
|
|
Ozonoh, M., Oboirien, B.O., Daramola, M.O., 2020. Optimization of process variables during torrefaction of coal/biomass/waste tyre blends: application of artificial neural network & response surface methodology. Biomass Bioenergy 143, 105808. doi: 10.1016/j.biombioe.2020.105808
|
|
Qi, X., Ren, Y.W., Wang, X.Z., 2017. New advances in the biodegradation of Poly(lactic) acid. Int. Biodeterior. Biodegrad. 117, 215–223. doi: 10.1016/j.ibiod.2017.01.010
|
|
Raj, T., Chandrasekhar, K., Naresh Kumar, A., Kim, S.H., 2022. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130. doi: 10.1016/j.rser.2022.112130
|
|
Ruland, W., 1961. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr. 14, 1180–1185. doi: 10.1107/S0365110X61003429
|
|
Ruz-Cruz, M.A., Herrera-Franco, P.J., Flores-Johnson, E.A., Moreno-Chulim, M.V., Galera-Manzano, L.M., Valadez-González, A., 2022. Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. J. Mater. Res. Technol. 18, 485–495. doi: 10.1016/j.jmrt.2022.02.072
|
|
Shen, M.C., Huang, W., Chen, M., Song, B., Zeng, G.M., Zhang, Y.X., 2020. micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 254, 120138. doi: 10.1016/j.jclepro.2020.120138
|
|
Silva, C.G., Campini, P.A.L., Rocha, D.B., Rosa, D.S., 2019. The influence of treated Eucalyptus microfibers on the properties of PLA biocomposites. Compos. Sci. Technol. 179, 54–62. doi: 10.18316/rcd.v10i22.3436
|
|
Stubbins, A., Law, K.L., Muñoz, S.E., Bianchi, T.S., Zhu, L., 2021. Plastics in the earth system. Science 373, 51–55. doi: 10.1126/science.abb0354
|
|
Taib, N.A.A.B., Rahman, M.R., Huda, D., Kuok, K.K., Hamdan, S., Bakri, M.K.B., Julaihi, M.R.M.B., Khan, A., 2023. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 80, 1179–1213. doi: 10.1007/s00289-022-04160-y
|
|
Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., Ståhl, K., 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12, 563–576. doi: 10.1007/s10570-005-9001-8
|
|
Tripathi, N., Hills, C.D., Singh, R.S., Atkinson, C.J., 2019. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim. Atmos. Sci. 2, 35. doi: 10.1038/s41612-019-0093-5
|
|
Wang, S.R., Dai, G.X., Ru, B., Zhao, Y., Wang, X.L., Xiao, G., Luo, Z.Y., 2017. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 120, 864–871. doi: 10.1016/j.energy.2016.11.135
|
|
Wang, W., Ye, G.C., Fan, D.P., Lu, Y., Shi, P., Wang, X., Bateer, B., 2021. Photo-oxidative resistance and adjustable degradation of poly-lactic acid (PLA) obtained by biomass addition and interfacial construction. Polym. Degrad. Stab. 194, 109762. doi: 10.1016/j.polymdegradstab.2021.109762
|
|
Wang, Z.Z., Xie, K., Zhu, W.K., Zhang, L., Zhao, Z., Xu, L.F., Yang, J.C., Shen, B.X., 2022. Effects of oxygen deficient and flue gas torrefaction on the surface property and structural feature of typical agriculture waste: rice husk. Fuel 327, 125211. doi: 10.1016/j.fuel.2022.125211
|
|
Wei, Z.Z., Xiong, D.Y., Duan, P.Z., Ding, S.L., Li, Y.L., Li, L.S., Niu, P.R., Chen, X.S., 2020. Preparation of carbon-based solid acid catalysts using rice straw biomass and their application in hydration of 𝛼-pinene. Catalysts 10, 213. doi: 10.3390/catal10020213
|
|
Xanthos, D., Walker, T.R., 2017. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar. Pollut. Bull. 118, 17–26. doi: 10.1016/j.marpolbul.2017.02.048
|
|
Xiao, L., Wang, B., Yang, G., Gauthier, M., 2012. Poly(lactic acid)-based biomaterials: synthesis, modification and applications. Biomed. Sci. Eng. Technol. 11, 247–282.
|
|
Xie, D., Liu, Z.L., Cao, Y.F., Yang, S.I., Su, C., Li, M., 2024. Improving antioxidant activities of water-soluble lignin-carbohydrate complex isolated from wheat stalk through prolonging ball-milling pretreatment and homogeneous extraction. J. Bioresour. Bioprod. 9, 113–125.
|
|
Xu, Z.X., Li, J., Li, P.P., Cai, C.G., Chen, S.T., Ding, B.N., Liu, S.M., Ge, M.S., Jin, M.J., 2023. Efficient lignin biodegradation triggered by alkali-tolerant ligninolytic bacteria through improving lignin solubility in alkaline solution. J. Bioresour. Bioprod. 8, 461–477.
|
|
Yang, Y., Sun, M.M., Zhang, M., Zhang, K., Wang, D.H., Lei, C., 2019. A fundamental research on synchronized torrefaction and pelleting of biomass. Renew. Energy 142, 668–676. doi: 10.1016/j.renene.2019.04.112
|
|
Yang, Y.Q., Wan, H., Wang, B.W., Wang, B., Chen, K., Tan, H.Y., Sun, C., Zhang, Y.H., 2024. Preparation and properties of bamboo fiber/polylactic acid composite modified with polycarbodiimide. Ind. Crops Prod. 218, 118829. doi: 10.1016/j.indcrop.2024.118829
|
|
Yu, S., Park, J., Kim, M., Kim, H., Ryu, C., Lee, Y., Yang, W., Jeong, Y.G., 2019. Improving energy density and grindability of wood pellets by dry torrefaction. Energy Fuels 33, 8632–8639. doi: 10.1021/acs.energyfuels.9b01086
|
|
Yu, Y., Wu, J., Ren, X.Y., Lau, A., Rezaei, H., Takada, M., Bi, X.T., Sokhansanj, S., 2022. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review. Renew. Sustain. Energy Rev. 154, 111871. doi: 10.1016/j.rser.2021.111871
|
|
Zaaba, N.F., Jaafar, M., 2020. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60, 2061–2075. doi: 10.1002/pen.25511
|
|
Zakaria, M.R., Ahmad Farid, M.A., Andou, Y., Ramli, I., Ali Hassan, M., 2023. Production of biochar and activated carbon from oil palm biomass: current status, prospects, and challenges. Ind. Crops Prod. 199, 116767. doi: 10.1016/j.indcrop.2023.116767
|
|
Zouari, M., Devallance, D.B., Marrot, L., 2022. Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp-polylactic acid (PLA) composites. Materials 15, 2271 (Basel). doi: 10.3390/ma15062271
|
|
Zuo, Y., Chen, K., Li, P., He, X., Li, W., Wu, Y., 2020. Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int. J. Biol. Macromol. 157, 177–186. doi: 10.18282/le.v9i6.1336
|