Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Giulia Resente, Alan Crivellaro. Environmental Impacts on Plant Cell Wall Lignification[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 4-6. doi: 10.1016/j.jobab.2024.11.001
Citation: Giulia Resente, Alan Crivellaro. Environmental Impacts on Plant Cell Wall Lignification[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 4-6. doi: 10.1016/j.jobab.2024.11.001

Environmental Impacts on Plant Cell Wall Lignification

doi: 10.1016/j.jobab.2024.11.001
More Information
  • Corresponding author: E-mail address: alan.crivellaro@unito.it (A. Crivellaro)
  • Available Online: 2024-11-24
  • Publish Date: 2025-02-01
  • Lignin is a natural resource used for energy production and a widely applied basis in the chemical industry. Physiological and wood anatomical evidence now suggests that the degree of lignin deposition in plant cell walls is constrained by low temperature and enhanced by increased temperature. Placing these findings in an industrial setting implies planning lignin supply in the forecasted global warming scenario.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    CRediT authorship contribution statement
    Giulia Resente: Resources, Writing – review & editing, Visualization. Alan Crivellaro: Conceptualization, Writing – original draft.
  • loading
  • Awasthi, M.K., Sar, T., Gowd, S.C., Rajendran, K., Kumar, V., Sarsaiya, S., Li, Y., Sindhu, R., Binod, P., Zhang, Z.Q., Pandey, A., Taherzadeh, M.J., 2023. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. Fuel 342, 127790. doi: 10.1016/j.fuel.2023.127790
    Campbell, A., Kim, W.J., Koch, P., 2007. Chemical variation in lodgepole pine with sapwood/heartwood, stem height, and variety. Wood Fiber Sci. 22, 22–30.
    Crivellaro, A., Büntgen, U., 2020. New evidence of thermally constrained plant cell wall lignification. Trends Plant Sci 25, 322–324. doi: 10.1016/j.tplants.2020.01.011
    Crivellaro, A., Piermattei, A., Dolezal, J., Dupree, P., Büntgen, U., 2022. Biogeographic implication of temperature-induced plant cell wall lignification. Commun. Biol. 5, 767. doi: 10.1038/s42003-022-03732-y
    Mariana, M., Alfatah, T., H P S, A.K., Yahya, E.B., Olaiya, N.G., Nuryawan, A., Mistar, E.M., Abdullah, C.K., Abdulmadjid, S.N., Ismail, H., 2021. A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. J. Mater. Res. Technol. 15, 2287–2316. doi: 10.1016/j.jmrt.2021.08.139
    Mazloom, N., Khorassani, R., Zohuri, G.H., Emami, H., Whalen, J., 2019. Development and characterization of lignin-based hydrogel for use in agricultural soils: preliminary evidence. CLEAN-Soil Air Water 47, 1900101. doi: 10.1002/clen.201900101
    Moura, J.C.M.S., Bonine, C.A.V., de Oliveira Fernandes Viana, J., Dornelas, M.C., Mazzafera, P., 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376. doi: 10.1111/j.1744-7909.2010.00892.x
    Obasa, V.D., Olanrewaju, O.A., Gbenebor, O.P., Ochulor, E.F., Odili, C.C., Abiodun, Y.O., Adeosun, S.O., 2022. A review on lignin-based carbon fibres for carbon footprint reduction. Atmosphere 13, 1605. doi: 10.3390/atmos13101605
    Piermattei, A., Crivellaro, A., Carrer, M., Urbinati, C., 2015. The "blue ring": anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29, 613–620. doi: 10.1007/s00468-014-1107-x
    Popper, Z.A., Michel, G., Hervé, C., Domozych, D.S., Willats, W.G.T., Tuohy, M.G., Kloareg, B., Stengel, D.B., 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590. doi: 10.1146/annurev-arplant-042110-103809
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science 311, 484–489. doi: 10.1126/science.1114736
    [12]
    Schweingruber, F.H., Dvorský, M., Börner, A., Doležal, J., 2020. Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe. Springer International Publishing, Cham.
    Tardy, B.L., Lizundia, E., Guizani, C., Hakkarainen, M., Sipponen, M.H., 2023. Prospects for the integration of lignin materials into the circular economy. Mater. Today 65, 122–132. doi: 10.1016/j.mattod.2023.04.001
    Tingle, J.S., Santoni, R.L., 2003. Stabilization of clay soils with nontraditional additives. Transp. Res. Rec. J. Transp. Res. Board 1819, 72–84. doi: 10.3141/1819b-10
    Weng, J.K., Chapple, C., 2010. The origin and evolution of lignin biosynthesis. New Phytol 187, 273–285. doi: 10.1111/j.1469-8137.2010.03327.x
    Wu, Y.C., Du, G.B., Yang, H.X., Ni, K.L., Yuan, J.F., Liu, C.Y., Ran, X., Tan, X.P., Gao, W., Yang, L., 2023. An environmentally friendly bio-based wood adhesive prepared via a green and mild method inspired by insect cuticle. Colloids Surf. A Physicochem. Eng. Aspects 671, 131722. doi: 10.1016/j.colsurfa.2023.131722
    Zhao, X.Y., Li, P.P., Liu, X.W., Xu, T.Y., Zhang, Y.Q., Meng, H.F., Xia, T., 2022. High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Front. Genet. 13, 1007513. doi: 10.3389/fgene.2022.1007513
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (111) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return