Citation: | Giulia Resente, Alan Crivellaro. Environmental Impacts on Plant Cell Wall Lignification[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 4-6. doi: 10.1016/j.jobab.2024.11.001 |
Awasthi, M.K., Sar, T., Gowd, S.C., Rajendran, K., Kumar, V., Sarsaiya, S., Li, Y., Sindhu, R., Binod, P., Zhang, Z.Q., Pandey, A., Taherzadeh, M.J., 2023. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. Fuel 342, 127790. doi: 10.1016/j.fuel.2023.127790
|
|
Campbell, A., Kim, W.J., Koch, P., 2007. Chemical variation in lodgepole pine with sapwood/heartwood, stem height, and variety. Wood Fiber Sci. 22, 22–30.
|
|
Crivellaro, A., Büntgen, U., 2020. New evidence of thermally constrained plant cell wall lignification. Trends Plant Sci 25, 322–324. doi: 10.1016/j.tplants.2020.01.011
|
|
Crivellaro, A., Piermattei, A., Dolezal, J., Dupree, P., Büntgen, U., 2022. Biogeographic implication of temperature-induced plant cell wall lignification. Commun. Biol. 5, 767. doi: 10.1038/s42003-022-03732-y
|
|
Mariana, M., Alfatah, T., H P S, A.K., Yahya, E.B., Olaiya, N.G., Nuryawan, A., Mistar, E.M., Abdullah, C.K., Abdulmadjid, S.N., Ismail, H., 2021. A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. J. Mater. Res. Technol. 15, 2287–2316. doi: 10.1016/j.jmrt.2021.08.139
|
|
Mazloom, N., Khorassani, R., Zohuri, G.H., Emami, H., Whalen, J., 2019. Development and characterization of lignin-based hydrogel for use in agricultural soils: preliminary evidence. CLEAN-Soil Air Water 47, 1900101. doi: 10.1002/clen.201900101
|
|
Moura, J.C.M.S., Bonine, C.A.V., de Oliveira Fernandes Viana, J., Dornelas, M.C., Mazzafera, P., 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376. doi: 10.1111/j.1744-7909.2010.00892.x
|
|
Obasa, V.D., Olanrewaju, O.A., Gbenebor, O.P., Ochulor, E.F., Odili, C.C., Abiodun, Y.O., Adeosun, S.O., 2022. A review on lignin-based carbon fibres for carbon footprint reduction. Atmosphere 13, 1605. doi: 10.3390/atmos13101605
|
|
Piermattei, A., Crivellaro, A., Carrer, M., Urbinati, C., 2015. The "blue ring": anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29, 613–620. doi: 10.1007/s00468-014-1107-x
|
|
Popper, Z.A., Michel, G., Hervé, C., Domozych, D.S., Willats, W.G.T., Tuohy, M.G., Kloareg, B., Stengel, D.B., 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590. doi: 10.1146/annurev-arplant-042110-103809
|
|
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science 311, 484–489. doi: 10.1126/science.1114736
|
|
[12] |
Schweingruber, F.H., Dvorský, M., Börner, A., Doležal, J., 2020. Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe. Springer International Publishing, Cham.
|
Tardy, B.L., Lizundia, E., Guizani, C., Hakkarainen, M., Sipponen, M.H., 2023. Prospects for the integration of lignin materials into the circular economy. Mater. Today 65, 122–132. doi: 10.1016/j.mattod.2023.04.001
|
|
Tingle, J.S., Santoni, R.L., 2003. Stabilization of clay soils with nontraditional additives. Transp. Res. Rec. J. Transp. Res. Board 1819, 72–84. doi: 10.3141/1819b-10
|
|
Weng, J.K., Chapple, C., 2010. The origin and evolution of lignin biosynthesis. New Phytol 187, 273–285. doi: 10.1111/j.1469-8137.2010.03327.x
|
|
Wu, Y.C., Du, G.B., Yang, H.X., Ni, K.L., Yuan, J.F., Liu, C.Y., Ran, X., Tan, X.P., Gao, W., Yang, L., 2023. An environmentally friendly bio-based wood adhesive prepared via a green and mild method inspired by insect cuticle. Colloids Surf. A Physicochem. Eng. Aspects 671, 131722. doi: 10.1016/j.colsurfa.2023.131722
|
|
Zhao, X.Y., Li, P.P., Liu, X.W., Xu, T.Y., Zhang, Y.Q., Meng, H.F., Xia, T., 2022. High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Front. Genet. 13, 1007513. doi: 10.3389/fgene.2022.1007513
|