Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Jing Shen, Meiyun Zhang. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 7-13. doi: 10.1016/j.jobab.2024.11.002
Citation: Jing Shen, Meiyun Zhang. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 7-13. doi: 10.1016/j.jobab.2024.11.002

Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing

doi: 10.1016/j.jobab.2024.11.002
Funds:

This work was supported by National Key Research and Development Program of China (No. 2017YFB0308300), Fundamental Research Funds for Central Universities of China (No. 2572021CG04), Natural Science Foundation of China (No. 218708046), Program for New Century Excellent Talents in University (No. NCET-12-0811), Longjiang Scholars Program (No. Q201809), and Heilongjiang Natural Science Foundation for Outstanding Young Scholars (No. JQ2023C004).

  • Available Online: 2025-02-21
  • Publish Date: 2024-11-26
  • Papermaking, a cornerstone of human civilization and one of China's Four Great Inventions, exemplifies the enduring legacy of ancient ingenuity in shaping modern materials science. Originating from the groundbreaking work of Lun Cai and his team, the papermaking process involves the meticulous disassembly, refinement, and reassembly of natural fibers into cohesive sheets: a process that, while refined, has remained fundamentally unchanged for nearly 2 000 years. This work explores the pivotal role of papermaking in contemporary society within the broader context of materials science, highlighting its fundamental principles and the remarkable versatility of its scalable process. Papermaking, once central to the dissemination of knowledge worldwide, has now evolved into a key player in the sustainable production of environmentally friendly products, touching every aspect of modern life. The principles underlying papermaking have inspired the development of novel materials, with techniques such as vacuum filtration paving the way for innovations like nanopapers based on a diverse group of building blcoks. Looking ahead, the field presents significant opportunities in sustainable sourcing, the creation of eco-friendly packaging, and the development of advanced materials with applications in healthcare and beyond. The enduring relevance of papermaking lies in its adaptability, versatility, and boundless potential for future innovation.

     

  • loading
  • [1]
    Aryal, P., Hefner, C., Martinez, B., Henry, C.S., 2024. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip 24, 1175-1206.
    [2]
    Bhaw-Luximon, A., Jhurry, D., 2021. From land and marine resources to advanced nanobiomaterials: real potential for the bioeconomy. Acc. Mater. Res. 2, 134-137.
    [3]
    Bian, P.W., Dai, Y.Y., Qian, X.R., Chen, W.S., Yu, H.P., Li, J.S., Shen, J., 2014. A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. RSC Adv. 4, 52680-52685.
    [4]
    Blechschmidt, J., Heinemann, S., 2006. A Short History of Mechanical Pulping. In: Handbook of Pulp, 1073-1074. Available at: https://doi.org/10.1002/9783527619887.ch13.
    [5]
    Burger, P., 2007. Charles Fenerty and his Paper Invention. Toronto: Library and Archives Canada.
    [6]
    Chen, H., Zhang, X.L., Zhang, Y.Y., Wang, D.F., Bao, D.L., Que, Y.D., Xiao, W.D., Du, S.X., Ouyang, M., Pantelides, S.T., Gao, H.J., 2019. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036-1040.
    [7]
    Clapperton, R.H., 2014. The paper-making machine: its invention, evolution, and development. Available at: https://doi.org/10.1016/C2013-0-10000-1.
    [8]
    Delaney, J.L., Hogan, C.F., Tian, J.F., Shen, W., 2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83, 1300-1306.
    [9]
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., 2007. Preparation and characterization of graphene oxide paper. Nature 448, 457-460.
    [10]
    Fan, J., Li, T., Ren, Y.Z., Qian, X.R., Wang, Q.W., Shen, J., Ni, Y.H., 2017. Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind. Crops Prod. 97, 417-424.
    [11]
    He, B., Zhang, M., Chen, G., 2019. Papermaking Principle and Engineering. Beijing: Light Industry Press.
    [12]
    Hills, R.L., 2016. Papermaking in Britain 1488-1988: A Short History. London: Bloomsbury Academic.
    [13]
    Huang, H.Y., Park, H., Huang, J.X., 2022. Self-crosslinking of graphene oxide sheets by dehydration. Chem 8, 2432-2441.
    [14]
    Huang, S.N., Zhang, S.X.A., Qian, X.R., Ni, Y.H., He, Z.B., Sheng, L., Shen, J., 2024. Rice-leaf-mimetic cellulosic paper as a substrate for rewritable devices and biolubricant-infused “slippery” surfaces. Chem. Eng. J. 486, 150073.
    [15]
    Huang, X.J., Qian, X.R., Li, J.S., Lou, S., Shen, J., 2015. Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers. Carbohydr. Polym. 117, 78-82.
    [16]
    Huang, X.J., Shen, J., Qian, X.R., 2013. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions. Carbohydr. Polym. 98, 931-935.
    [17]
    Huang, X.J., Sun, Z.S., Qian, X.R., Li, J.S., Shen, J., 2014. Starch/sodium oleate/calcium chloride modified filler for papermaking: impact of filler modification process conditions and retention systems As evaluated by filler bondability factor in combination with other parameters. Ind. Eng. Chem. Res. 53, 6426-6432.
    [18]
    Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R., 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752-754.
    [19]
    Khairallah, S.A., Martin, A.A., Lee, J.R.I., Guss, G., Calta, N.P., Hammons, J.A., Nielsen, M.H., Chaput, K., Schwalbach, E., Shah, M.N., Chapman, M.G., Willey, T.M., Rubenchik, A.M., Anderson, A.T., Wang, Y.M., Matthews, M.J., King, W.E., 2020. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368, 660-665.
    [20]
    Kiiskinen, H., Salminen, K., Lappalainen, T., Asikainen, J., Keranen, J., Hellen, E., 2019. Progress in foam forming technology. TAPPI J. 18, 499-510.
    [21]
    Li, L.M., Qian, X.R., Shen, J., 2022. Flame-retardant, antibacterial, liquid-barrier, and wet-strength paper enabled by cellulosic fiber-derived additives. Carbohydr. Polym. 293, 119728.
    [22]
    Li, T., Fan, J., Chen, W.S., Shu, J.Y., Qian, X.R., Wei, H.F., Wang, Q.W., Shen, J., 2016. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production. Carbohydr. Polym. 149, 20-27.
    [23]
    Li, X., Ballerini, D.R., Shen, W., 2012. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6, 11301-1130113.
    [24]
    Liu, R., 1978. History of Chinese Ancient Papermaking. Beijing: Light Industry Press.
    [25]
    Mao, L., Park, H., Soler-Crespo, R.A., Espinosa, H.D., Han, T.H., Nguyen, S.T., Huang, J.X., 2019. Stiffening of graphene oxide films by soft porous sheets. Nat. Commun. 10, 3677.
    [26]
    Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3-10.
    [27]
    Shen, J., Fatehi, P., 2013. A review on the use of lignocellulose-derived chemicals in wet-end application of papermaking. Curr. Org. Chem. 17, 1647-1654.
    [28]
    Shen, J., Fatehi, P., Ni, Y.H., 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145-3160.
    [29]
    Shen, J., Fatehi, P., Soleimani, P., Ni, Y.H., 2011a. Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresour. Technol. 102, 10035-10039.
    [30]
    Shen, J., Fatehi, P., Soleimani, P., Ni, Y.H., 2012. Lime treatment of prehydrolysis liquor from the kraft-based dissolving pulp production process. Ind. Eng. Chem. Res. 51, 662-667.
    [31]
    Shen, J., Hubbe, M.A., 2023. Why paper technologists use the terms “wet end” and “wet end chemistry”. BioResources 19, 19-22.
    [32]
    Shen, J., Kaur, I., Baktash, M.M., He, Z.B., Ni, Y.H., 2013. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Bioresour. Technol. 127, 59-65.
    [33]
    Shen, J., Liu, W., Li, C., 2005. Effect of cationic water-soluble polymers on rosin emulsification. China Pulp Paper 24, 22-25.
    [34]
    Shen, J., Song, Z., Qian, X., 2009a. Investigations on the preparation of starch/sodium oleate/alum modified precipitated calcium carbonate filler and its use in papermaking. Appita 62, 360.
    [35]
    Shen, J., Song, Z.Q., Qian, X.R., Liu, W.X., 2009b. A preliminary investigation into the use of acid-tolerant precipitated calcium carbonate fillers in papermaking of deinked pulp derived from recycled newspaper. BioResources 4, 1178-1189.
    [36]
    Shen, J., Song, Z.Q., Qian, X.R., Liu, W.X., 2009c. Modification of papermaking grade fillers: a brief review. BioResources 4, 1190-1209.
    [37]
    Shen, J., Song, Z.Q., Qian, X.R., Liu, W.X., 2009d. Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid-resistance and use of the modified filler in papermaking. BioResources 4, 1498-1519.
    [38]
    Shen, J., Song, Z.Q., Qian, X.R., Ni, Y.H., 2011b. A review on use of fillers in cellulosic paper for functional applications. Ind. Eng. Chem. Res. 50, 661-666.
    [39]
    Shen, J., Song, Z.Q., Qian, X.R., Ni, Y.H., 2011c. Carbohydrate-based fillers and pigments for papermaking: a review. Carbohydr. Polym. 85, 17-22.
    [40]
    Shen, J., Song, Z.Q., Qian, X.R., Yang, F., 2010. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr. Polym. 81, 545-553.
    [41]
    Smook, G., 2016. Handbook for Pulp & Paper Technologists. Atlanta: Tappi Press.
    [42]
    Tejado, A., van de Ven, T.G.M., 2010. Why does paper get stronger as it dries? Mater. Today 13, 42-49.
    [43]
    Villalobos, L.F., Babu, D.J., Hsu, K.J., Van Goethem, C., Agrawal, K.V., 2022. Gas separation membranes with atom-thick nanopores: the potential of nanoporous single-layer graphene. Acc. Mater. Res. 3, 1073-1087.
    [44]
    Wan, J.M., Qian, X.R., Zhang, M.Y., Song, S.X., Shen, J., 2020a. Edible additives & cellulosic paper. BioResources 15, 2114-2116.
    [45]
    Wan, J.M., Wang, P., Qian, X.R., Zhang, M.Y., Song, S.X., Wang, M., Guo, Q.Y., Shen, J., 2020b. Bioinspired paper-based nanocomposites enabled by biowax-mineral hybrids and proteins. ACS Sustain. Chem. Eng. 8, 9906-9919.
    [46]
    Wang, P., Qian, X.R., Shen, J., 2017a. Superhydrophobic coatings with edible biowaxes for reducing or eliminating liquid residues of foods and drinks in containers. BioResources 13, 1-2.
    [47]
    Wang, Y.S., Huo, H.Y., Qian, X.R., Shen, J., 2020. Colloids, nanostructures, and supramolecular assemblies for papermaking. BioResources 15, 4646-4649.
    [48]
    Wang, Z., Sahadevan, R., Yeh, C.N., Menkhaus, T.J., Huang, J.X., Fong, H., 2017b. Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. Nanotechnology 28, 31LT02.
    [49]
    Wu, Z.C., Chen, Z.H., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., 2004. Transparent, conductive carbon nanotube films. Science 305, 1273-1276.
    [50]
    Yan, C.Y., Wang, J.X., Kang, W.B., Cui, M.Q., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S., 2014. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022-2027.
    [51]
    Yang, B., Wang, L., Zhang, M.Y., Luo, J.J., Lu, Z.Q., Ding, X.Y., 2020. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186.
    [52]
    Yeh, C.N., Raidongia, K., Shao, J.J., Yang, Q.H., Huang, J.X., 2014. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166-170.
    [53]
    Yu, X.Y., Bian, P.W., Xue, Y., Qian, X.R., Yu, H.P., Chen, W.S., Hu, X.H., Wang, P., Wu, D., Duan, Q.H., Li, L.M., Shen, J., Ni, Y.H., 2017. Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into “sticky” superhydrophobic paper. Carbohydr. Polym. 174, 95-102.
    [54]
    Yuan, Z.F., Cheng, N., Li, J.Q., Yuan, H.Y., Peng, J.M., Qian, X.R., Ni, Y.H., He, Z.B., Shen, J., 2024. Bridging papermaking and hydrogel production: nanoparticle-loaded cellulosic hollow fibers with pitted walls as skeleton materials for multifunctional electromagnetic hydrogels. Int. J. Biol. Macromol. 274, 133280.
    [55]
    Yuan, Z.F., Lin, H.J., Qian, X.R., Shen, J., 2019. Converting a dilute slurry of hollow tube-like papermaking fibers into dynamic hydrogels. J. Bioresour. Bioprod. 4, 214-221.
    [56]
    Zhai, R., Cu, R., Qian, X., Shen, J., 2023. Separators for lithium-ion batteries: a composite network of cellulosic fibers and zirconia fibers enhanced with fiber-derived additives. China Pulp Paper, 42, 1-10.
    [57]
    Zhu, H.L., Li, Y.Y., Fang, Z.Q., Xu, J.J., Cao, F.Y., Wan, J.Y., Preston, C., Yang, B., Hu, L.B., 2014. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8, 3606-3613.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return