Citation: | Jing Shen, Meiyun Zhang. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 7-13. doi: 10.1016/j.jobab.2024.11.002 |
Aryal, P., Hefner, C., Martinez, B., Henry, C.S., 2024. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab Chip 24, 1175–1206. doi: 10.1039/d3lc00871a
|
|
Bhaw-Luximon, A., Jhurry, D., 2021. From land and marine resources to advanced nanobiomaterials: real potential for the bioeconomy. Acc. Mater. Res. 2, 134–137. doi: 10.1021/accountsmr.1c00003
|
|
Bian, P., Dai, Y., Qian, X., Chen, W., Yu, H., Li, J., Shen, J., 2014. A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. RSC Adv. 4, 52680–52685. doi: 10.1039/C4RA08437C
|
|
Blechschmidt, J., Heinemann, S., 2006. A Short History of Mechanical Pulping. In: Handbook of Pulp, pp. 1073–1074. doi:
|
|
Burger, P., 2007. Charles Fenerty and his Paper Invention. Library and Archives Canada, Toronto.
|
|
Chen, H., Zhang, X. -L., Zhang, Y. -Y., Wang, D. ., Bao, D. -L., Que, Y. ., Xiao, W. ., Du, S. ., Ouyang, M., Pantelides, S.T., Gao, H. -J., 2019. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036–1040. doi: 10.1126/science.aax7864
|
|
Clapperton, R.H., 2014. The paper-making machine: its invention, evolution, and development. Available at:
|
|
Delaney, J.L., Hogan, C.F., Tian, J., Shen, W., 2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83, 1300–1306. doi: 10.1021/ac102392t
|
|
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., 2007. Preparation and characterization of graphene oxide paper. Nature 448, 457–460. doi: 10.1038/nature06016
|
|
Fan, J., Li, T., Ren, Y., Qian, X., Wang, Q., Shen, J., Ni, Y., 2017. Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind. Crops Prod. 97, 417–424. doi: 10.1016/j.indcrop.2016.12.048
|
|
He, B., Zhang, M., Chen, G., 2019. Papermaking Principle and Engineering. Light Industry Press, Beijing.
|
|
[12] |
Hills, R.L., 2016. Papermaking in Britain 1488–1988: A Short History. Bloomsbury Academic, London.
|
Huang, H. ., Park, H., Huang, J., 2022. Self-crosslinking of graphene oxide sheets by dehydration. Chem 8, 2432–2441. doi: 10.1016/j.chempr.2022.05.016
|
|
Huang, S., Zhang, S. X. -A., Qian, X., Ni, Y., He, Z., Sheng, L., Shen, J., 2024. Rice-leaf-mimetic cellulosic paper as a substrate for rewritable devices and biolubricant-infused "slippery" surfaces. Chem. Eng. J. 486, 150073. doi: 10.1016/j.cej.2024.150073
|
|
Huang, X., Qian, X., Li, J., Lou, S., Shen, J., 2015. Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers. Carbohydr. Polym. 117, 78–82. doi: 10.1016/j.carbpol.2014.09.047
|
|
Huang, X., Shen, J., Qian, X., 2013. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions. Carbohydr. Polym. 98, 931–935. doi: 10.1016/j.carbpol.2013.07.024
|
|
Huang, X., Sun, Z., Qian, X., Li, J., Shen, J., 2014. Starch/sodium oleate/calcium chloride modified filler for papermaking: impact of filler modification process conditions and retention systems As evaluated by filler bondability factor in combination with other parameters. Ind. Eng. Chem. Res. 53, 6426–6432. doi: 10.1021/ie500770r
|
|
Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R., 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754. doi: 10.1126/science.1245711
|
|
Khairallah, S.A., Martin, A.A., Lee, J.R.I., Guss, G., Calta, N.P., Hammons, J.A., Nielsen, M.H., Chaput, K., Schwalbach, E., Shah, M.N., Chapman, M.G., Willey, T.M., Rubenchik, A.M., Anderson, A.T., Wang, Y.M., Matthews, M.J., King, W.E., 2020. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368, 660–665. doi: 10.1126/science.aay7830
|
|
Kiiskinen, H., Salminen, K., Lappalainen, T., Asikainen, J., Keranen, J., Hellen, E., 2019. Progress in foam forming technology. TAPPI J. 18, 499–510. doi: 10.32964/tj18.8.499
|
|
Li, L. ., Qian, X., Shen, J., 2022. Flame-retardant, antibacterial, liquid-barrier, and wet-strength paper enabled by cellulosic fiber-derived additives. Carbohydr. Polym. 293, 119728. doi: 10.1016/j.carbpol.2022.119728
|
|
Li, T., Fan, J., Chen, W. ., Shu, J., Qian, X., Wei, H., Wang, Q., Shen, J., 2016. Coaggregation of mineral filler particles and starch granules as a basis for improving filler-fiber interaction in paper production. Carbohydr. Polym. 149, 20–27. doi: 10.1016/j.carbpol.2016.04.082
|
|
Li, X., Ballerini, D.R., Shen, W., 2012. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6, 11301–1130113. doi: 10.1063/1.3687398
|
|
Liu, R., 1978. History of Chinese Ancient Papermaking. Light Industry Press, Beijing.
|
|
Mao, L., Park, H., Soler-Crespo, R.A., Espinosa, H.D., Han, T.H., Nguyen, S.T., Huang, J.X., 2019. Stiffening of graphene oxide films by soft porous sheets. Nat. Commun. 10, 3677. doi: 10.1038/s41467-019-11609-8
|
|
Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E., 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10. doi: 10.1021/ac9013989
|
|
Shen, J., Fatehi, P., 2013. A review on the use of lignocellulose-derived chemicals in wet-end application of papermaking. Curr. Org. Chem. 17, 1647–1654. doi: 10.2174/13852728113179990075
|
|
Shen, J., Fatehi, P., Ni, Y., 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21, 3145–3160. doi: 10.1007/s10570-014-0380-6
|
|
Shen, J., Fatehi, P., Soleimani, P., Ni, Y., 2011a. Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresour. Technol. 102, 10035–10039. doi: 10.1016/j.biortech.2011.08.058
|
|
Shen, J., Fatehi, P., Soleimani, P., Ni, Y., 2012. Lime treatment of prehydrolysis liquor from the kraft-based dissolving pulp production process. Ind. Eng. Chem. Res. 51, 662–667. doi: 10.1021/ie2019195
|
|
Shen, J., Hubbe, M.A., 2023. Why paper technologists use the terms "wet end" and "wet end chemistry. BioResources 19, 19–22. doi: 10.15376/biores.19.1.19-22
|
|
Shen, J., Kaur, I., Baktash, M.M., He, Z., Ni, Y., 2013. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Bioresour. Technol. 127, 59–65. doi: 10.1016/j.biortech.2012.10.031
|
|
Shen, J., Liu, W., Li, C., 2005. Effect of cationic water-soluble polymers on rosin emulsification. China Pulp Paper 24, 22–25.
|
|
Shen, J., Song, Z., Qian, X., 2009a. Investigations on the preparation of starch/sodium oleate/alum modified precipitated calcium carbonate filler and its use in papermaking. Appita 62, 360.
|
|
Shen, J., Song, Z., Qian, X., Liu, W., 2009b. A preliminary investigation into the use of acid-tolerant precipitated calcium carbonate fillers in papermaking of deinked pulp derived from recycled newspaper. BioResources 4, 1178–1189. doi: 10.15376/biores.4.3.1178-1189
|
|
Shen, J., Song, Z., Qian, X., Liu, W., 2009c. Modification of papermaking grade fillers: a brief review. BioResources 4, 1190–1209. doi: 10.15376/biores.4.3.1190-1209
|
|
Shen, J., Song, Z., Qian, X., Liu, W., 2009d. Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid-resistance and use of the modified filler in papermaking. BioResources 4, 1498–1519. doi: 10.15376/biores.4.4.1498-1519
|
|
Shen, J., Song, Z., Qian, X., Ni, Y., 2011. A review on use of fillers in cellulosic paper for functional applications. Ind. Eng. Chem. Res. 50, 661–666. doi: 10.1021/ie1021078
|
|
Shen, J., Song, Z., Qian, X., Ni, Y., 2011c. Carbohydrate-based fillers and pigments for papermaking: a review. Carbohydr. Polym. 85, 17–22. doi: 10.1016/j.carbpol.2011.02.026
|
|
Shen, J., Song, Z., Qian, X., Yang, F., 2010. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: preparation and their use in papermaking. Carbohydr. Polym. 81, 545–553. doi: 10.1016/j.carbpol.2010.03.012
|
|
[41] |
Smook, G., 2016. Handbook for Pulp & Paper Technologists. Tappi Press, Atlanta.
|
Tejado, A., van de Ven, T.G.M., 2010. Why does paper get stronger as it dries? Mater. Today 13, 42–49.
|
|
Villalobos, L.F., Babu, D.J., Hsu, K.J., Van Goethem, C., Agrawal, K.V., 2022. Gas separation membranes with atom-thick nanopores: the potential of nanoporous single-layer graphene. Acc. Mater. Res. 3, 1073–1087. doi: 10.1021/accountsmr.2c00143
|
|
Wan, J., Qian, X., Zhang, M., Song, S., Shen, J., 2020a. Edible additives & cellulosic paper. BioResources 15, 2114–2116. doi: 10.15376/biores.15.2.2114-2116
|
|
Wan, J., Wang, P., Qian, X., Zhang, M., Song, S., Wang, M., Guo, Q., Shen, J., 2020b. Bioinspired paper-based nanocomposites enabled by biowax–mineral hybrids and proteins. ACS Sustain. Chem. Eng. 8, 9906–9919. doi: 10.1021/acssuschemeng.0c03187
|
|
Wang, P., Qian, X., Shen, J., 2017a. Superhydrophobic coatings with edible biowaxes for reducing or eliminating liquid residues of foods and drinks in containers. BioResources 13, 1–2. doi: 10.15376/biores.13.1.1-2
|
|
Wang, Y., Huo, H., Qian, X., Shen, J., 2020. Colloids, nanostructures, and supramolecular assemblies for papermaking. BioResources 15, 4646–4649. doi: 10.15376/biores.15.3.4646-4649
|
|
Wang, Z., Sahadevan, R., Yeh, C.N., Menkhaus, T.J., Huang, J.X., Fong, H., 2017b. Hot-pressed polymer nanofiber supported graphene membrane for high-performance nanofiltration. Nanotechnology 28, 31LT02. doi: 10.1088/1361-6528/aa7ba9
|
|
Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., Rinzler, A.G., 2004. Transparent, conductive carbon nanotube films. Science 305, 1273–1276. doi: 10.1126/science.1101243
|
|
Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S., 2014. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027. doi: 10.1002/adma.201304742
|
|
Yang, B., Wang, L., Zhang, M., Luo, J., Lu, Z., Ding, X., 2020. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30, 2000186. doi: 10.1002/adfm.202000186
|
|
Yeh, C. -N., Raidongia, K., Shao, J., Yang, Q. -H., Huang, J., 2014. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170.
|
|
Yu, X., Bian, P., Xue, Y., Qian, X., Yu, H., Chen, W., Hu, X., Wang, P., Wu, D., Duan, Q., Li, L., Shen, J., Ni, Y., 2017. Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into "sticky" superhydrophobic paper. Carbohydr. Polym. 174, 95–102. doi: 10.1016/j.carbpol.2017.06.038
|
|
Yuan, Z., Cheng, N., Li, J., Yuan, H., Peng, J., Qian, X., Ni, Y., He, Z., Shen, J., 2024. Bridging papermaking and hydrogel production: nanoparticle-loaded cellulosic hollow fibers with pitted walls as skeleton materials for multifunctional electromagnetic hydrogels. Int. J. Biol. Macromol. 274, 133280. doi: 10.1016/j.ijbiomac.2024.133280
|
|
Yuan, Z., Lin, H., Qian, X., Shen, J., 2019. Converting a dilute slurry of hollow tube-like papermaking fibers into dynamic hydrogels. J. Bioresour. Bioprod. 4, 214–221.
|
|
Zhai, R., Cu, R., Qian, X., Shen, J., 2023. Separators for lithium ion batteries: a composite network of cellulosic fibers and zirconia fibers enhanced with fiber derived additives. China Pulp Paper 42, 1–10.
|
|
Zhu, H., Li, Y., Fang, Z., Xu, J., Cao, F., Wan, J., Preston, C., Yang, B., Hu, L., 2014. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8, 3606–3613. doi: 10.1021/nn500134m
|