Volume 10 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Shuang Liang, Xuechuan Wang, Chao Wei, Long Xie, Zhongming Song, Xugang Dang. Remediation and resource utilization of Cr(Ⅲ), Al(Ⅲ) and Zr(Ⅳ)-containing tannery effluent based on chitosan-carboxymethyl cellulose aerogel[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 77-91. doi: 10.1016/j.jobab.2024.11.003
Citation: Shuang Liang, Xuechuan Wang, Chao Wei, Long Xie, Zhongming Song, Xugang Dang. Remediation and resource utilization of Cr(Ⅲ), Al(Ⅲ) and Zr(Ⅳ)-containing tannery effluent based on chitosan-carboxymethyl cellulose aerogel[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 77-91. doi: 10.1016/j.jobab.2024.11.003

Remediation and resource utilization of Cr(Ⅲ), Al(Ⅲ) and Zr(Ⅳ)-containing tannery effluent based on chitosan-carboxymethyl cellulose aerogel

doi: 10.1016/j.jobab.2024.11.003
Funds:

No. 22108165).

The authors are grateful for the financial support of the Science and Technology Project of Quanzhou City (No. 2024G03), National Natural Science Foundation of China (No. 22478235), and National Natural Science Foundation of China (No. 22078183

  • Available Online: 2025-02-21
  • Publish Date: 2024-11-17
  • Composite aerogel based on sodium carboxymethyl cellulose (CMCNa) and chitosan (CS), i.e., CS/CMCNa, was prepared through a sol-gel method. Then, CS/CMCNa was used for simulating the adsorption of metal ions (Cr3+, Al3+ and Zr4+) produced by the tanning industry. The adsorption process is consistent with the Langmuir isotherm adsorption model and pseudo-second order kinetics. The maximum fitted adsorption capacities of Cr3+, Al3+, and Zr4+ could reach 250.0, 111.1, and 100.0 mg/g, respectively. After metal ion adsorption, the obtained composite materials (CS/CMCNa-Cr3+, CS/CMCNa-Al3+, and CS/CMCNa-Zr4+) were used as re-tanning agents in the re-tanning process to leather. The re-tanning agent could increase the shrinkage temperature of leather by up to 5 ℃. Compared with the traditional method, the method utilized in this study achieved the integration of mental ions-containing wastewater treatment and waste adsorbent/adsorbates recycling.

     

  • loading
  • [1]
    Cai, Y.W., Wu, C.F., Liu, Z.Y., Zhang, L.J., Chen, L.H., Wang, J.Q., Wang, X.K., Yang, S.T., Wang, S.A., 2017. Fabrication of a phosphorylated graphene oxide-chitosan composite for highly effective and selective capture of U(Ⅵ). Environ. Sci.: Nano 4, 1876-1886.
    [2]
    Czirok, I.S., Jakab, E., Czégény, Z., Badea, E., Babinszki, B., Tömösközi, S., May, Z., Sebestyén, Z., 2023. Thermal characterization of leathers tanned by metal salts and vegetable tannins. J. Anal. Appl. Pyrolysis 173, 106035.
    [3]
    Dang, X.G., Yu, Z.F., Yang, M., Woo, M.W., Song, Y.Q., Wang, X.C., Zhang, H.J., 2022. Sustainable electrochemical synthesis of natural starch-based biomass adsorbent with ultrahigh adsorption capacity for Cr(Ⅵ) and dyes removal. Sep. Purif. Technol. 288, 120668.
    [4]
    Deghles, A., Kurt, U., 2016. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chem. Eng. Process. Process. Intensif. 104, 43-50.
    [5]
    Ding, W., Liu, H.T., Remón, J., Jiang, Z.C., Chen, G.D., Pang, X.Y., Ding, Z.W., 2022a. A step-change toward a sustainable and chrome-free leather production: using a biomass-based, aldehyde tanning agent combined with a pioneering terminal aluminum tanning treatment (BAT-TAT). J. Clean. Prod. 333, 130201.
    [6]
    Ding, W., Remón, J., Jiang, Z.C., 2022b. Biomass-derived aldehyde tanning agents with in situ dyeing properties: a ‘two birds with one stone’ strategy for engineering chrome-free and dye-free colored leather. Green Chem. 24, 3750-3758.
    [7]
    Du, P.Y., Xu, L., Ke, Z.J., Liu, J.X., Wang, T., Chen, S., Mei, M., Li, J.P., Zhu, S.J., 2022. A highly efficient biomass-based adsorbent fabricated by graft copolymerization: kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal. J. Colloid Interface Sci. 616, 12-22.
    [8]
    Gao, D.G., Cheng, Y.M., Wang, P.P., Li, F., Wu, Y.K., Lyu, B., Ma, J.Z., Qin, J.B., 2020. An eco-friendly approach for leather manufacture based on P(POSS-MAA)-aluminum tanning agent combination tannage. J. Clean. Prod. 257, 120546.
    [9]
    Garba, Z.N., Lawan, I., Zhou, W.M., Zhang, M.X., Wang, L.W., Yuan, Z.H., 2020. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals: a review. Sci. Total Environ. 717, 135070.
    [10]
    Guan, X.Y., Zhang, B.Y., Liu, S.Y., An, M., Han, Q.X., Li, D.P., Rao, P., 2023. Facile degradation of chitosan-sodium alginate-chromium (Ⅲ) gel in relation to leather re-tanning and filling. Int. J. Biol. Macromol. 240, 124437.
    [11]
    Guo, Z.J., Fan, Y., Liu, T., Zhang, Y.M., Wan, Q., 2023. Adsorption and enrichment of Ag(I) from industrial wastewater using woody biomass-based biosorbent. Hydrometallurgy 219, 106083.
    [12]
    Hamza, M.F., Hamad, D.M., Hamad, N.A., Abdel-Rahman, A.A.H., Fouda, A., Wei, Y.Z., Guibal, E., El-Etrawy, A.A S., 2022. Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent. Chem. Eng. J. 428, 131775.
    [13]
    Hansen, É., Monteiro de Aquim, P., Hansen, A.W., Cardoso, J.K., Ziulkoski, A.L., Gutterres, M., 2020. Impact of post-tanning chemicals on the pollution load of tannery wastewater. J. Environ. Manage. 269, 110787.
    [14]
    Hao, D.Y., Wang, X.C., Liang, S., Ouyang, Y., Liu, X.H., Hao, D.Y., Dang, X.G., 2023b. Sustainable leather making an amphoteric organic chrome-free tanning agent based on recycling waste leather. Sci. Total Environ. 867, 161531.
    [15]
    Hao, D.Y., Wang, X.C., Ouyang, Y., Liang, S., Bai, Z.X., Yang, J., Liu, X.H., Dang, X.G., 2023a. A “wrench-like” green amphoteric organic chrome-free tanning agent provides long-term and effective antibacterial protection for leather. J. Clean. Prod. 404, 136917.
    [16]
    Hokkanen, S., Bhatnagar, A., Sillanpää, M., 2016. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156-173.
    [17]
    Jiang, Z.C., Ding, W., Xu, S.G., Remón, J., Shi, B., Hu, C.W., Clark, J.H., 2020. A ‘Trojan horse strategy’ for the development of a renewable leather tanning agent produced via an AlCl3-catalyzed cellulose depolymerization. Green Chem. 22, 316-321.
    [18]
    Kenawy, I.M., Hafez, M.A.H., Ismail, M.A., Hashem, M.A., 2018. Adsorption of Cu(Ⅱ), Cd(Ⅱ), Hg(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) from aqueous single metal solutions by guanyl-modified cellulose. Int. J. Biol. Macromol. 107, 1538-1549.
    [19]
    Kim, S., Park, Y.H., Lee, J.B., Kim, H.S., Choi, Y.E., 2020. Phosphorus adsorption behavior of industrial waste biomass-based adsorbent, esterified polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers in aqueous solution. J. Hazard. Mater. 400, 123217.
    [20]
    Kim, Y., Bae, J., Park, H., Suh, J.K., You, Y.W., Choi, H., 2016. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: facile synthesis and adsorption kinetics. Water Res. 101, 187-194.
    [21]
    Köse, K., Mavlan, M., Youngblood, J.P., 2020. Applications and impact of nanocellulose based adsorbents. Cellulose 27, 2967-2990.
    [22]
    Kyzioł-Komosińska, J., Augustynowicz, J., Lasek, W., Czupioł, J., Ociński, D., 2018. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium. J. Environ. Manage. 214, 295-304.
    [23]
    Liu, Q.M., Li, Y.Y., Chen, H.F., Lu, J., Yu, G.S., Möslang, M., Zhou, Y.B., 2020. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J. Hazard. Mater. 382, 121040.
    [24]
    Liu, X.H., Wang, Y.Y., Wang, X.C., Jiang, H.E., 2021. Development of hyperbranched poly-(amine-ester) based aldehyde/chrome-free tanning agents for sustainable leather resource recycling. Green Chem. 23, 5924-5935.
    [25]
    Lujanienė, G., Novikau, R., Karalevičiūtė, K., Pakštas, V., Talaikis, M., Levinskaitė, L., Selskienė, A., Selskis, A., Mažeika, J., Jokšas, K., 2024. Chitosan-minerals-based composites for adsorption of caesium, cobalt and europium. J. Hazard. Mater. 462, 132747.
    [26]
    Lyu, B., Chang, R., Gao, D.G., Ma, J.Z., 2018. Chromium footprint reduction: nanocomposites as efficient pretanning agents for cowhide shoe upper leather. ACS Sustainable Chem. Eng. 6, 5413-5423.
    [27]
    Mucci, M., Noyma, N.P., de Magalhães, L., Miranda, M., van Oosterhout, F., Guedes, I.A., Huszar, V.L.M., Marinho, M.M., Lürling, M., 2017. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell Lysis. Water Res. 118, 121-130.
    [28]
    Nur-E-Alam, M., Abu Sayid Mia, M., Ahmad, F., Rahman, M.M., 2020. An overview of chromium removal techniques from tannery effluent. Appl. Water Sci. 10, 205.
    [29]
    Osman, A.I., El-Monaem, E.M.A., Elgarahy, A.M., Aniagor, C.O., Hosny, M., Farghali, M., Rashad, E., Ejimofor, M.I., López-Maldonado, E.A., Ihara, I., Yap, P.S., Rooney, D.W., Eltaweil, A.S., 2023. Methods to prepare biosorbents and magnetic sorbents for water treatment: a review. Environ. Chem. Lett. 21, 2337-2398.
    [30]
    Ouyang, M., Hu, K.H., Jiang, Q.W., Yao, Q.D., Zhou, H.L., Deng, Y.P., Shen, Y.Y., Li, F.H., Zhuang, L.H., Wang, G.W., 2022. An approach on chromium discharge reduction: effect and mechanism of ketone carboxylic acid as high exhaustion chrome tanning agent. J. Clean. Prod. 367, 133125.
    [31]
    Özsin, G., Kılıç, M., Apaydın-Varol, E., Pütün, A.E., 2019. Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Appl. Water Sci. 9, 56.
    [32]
    Patel, P.K., Pandey, L.M., Uppaluri, R.V.S., 2023. Adsorptive removal of Zn, Fe, and Pb from Zn dominant simulated industrial wastewater solution using polyvinyl alcohol grafted chitosan variant resins. Chem. Eng. J. 459, 141563.
    [33]
    Sen, T.K., 2023. Adsorptive removal of dye (methylene blue) organic pollutant from water by pine tree leaf biomass adsorbent. Processes 11, 1877.
    [34]
    Shi, R.J., Wang, T., Lang, J.Q., Zhou, N., Ma, M.G., 2022. Multifunctional cellulose and cellulose-based (nano) composite adsorbents. Front. Bioeng. Biotechnol. 10, 891034.
    [35]
    Sinha, N., Jiménez, J.R., Pfund, B., Prescimone, A., Piguet, C., Wenger, O.S., 2021. A near-infrared-Ⅱ emissive chromium(Ⅲ) complex. Angew. Chem. Int. Ed 60, 23722-23728.
    [36]
    Sivagami, K., Sakthivel, K.P., Nambi, I.M., 2018. Advanced oxidation processes for the treatment of tannery wastewater. J. Environ. Chem. Eng. 6, 3656-3663.
    [37]
    Song, L., Liu, F.Q., Zhu, C.Q., Li, A.M., 2019. Facile one-step fabrication of carboxymethyl cellulose based hydrogel for highly efficient removal of Cr(Ⅵ) under mild acidic condition. Chem. Eng. J. 369, 641-651.
    [38]
    Sun, B.F., Yuan, Y.N., Li, H.L., Li, X.Y., Zhang, C.H., Guo, F.A., Liu, X.H., Wang, K.A., Zhao, X.S., 2019. Waste-cellulose-derived porous carbon adsorbents for methyl orange removal. Chem. Eng. J. 371, 55-63.
    [39]
    Tang, J.Y., Xiong, Y.S., Li, M.X., Jia, R., Zhou, L.S., Fan, B.H., Li, K., Li, W., Li, H., Lu, H.Q., 2023. Hyperbranched polyethyleneimine-functionalised chitosan aerogel for highly efficient removal of melanoidins from wastewater. J. Hazard. Mater. 447, 130731.
    [40]
    Wang, L.H., Mo, H.Z., Li, H.B., Xu, D., Gao, D.G., Liu, Z.B., Zhang, J.Y., Yao, L.S., Hu, L.B., 2023. Preparation and application of Tremella polysaccharide based chrome free tanning agent for sheepskin processing. Int. J. Biol. Macromol. 241, 124493.
    [41]
    Wang, X.C., Su, R.R., Hao, D.Y., Dang, X.G., 2022. Sustainable utilization of corn starch resources: a novel soluble starch-based functional chrome-free tanning agent for the eco-leather production. Ind. Crops Prod. 187, 115534.
    [42]
    Wei, C., Wang, X.C., Wang, W.N., Sun, S.W., Liu, X.H., 2022. Bifunctional amphoteric polymer-based ecological integrated retanning/fatliquoring agents for leather manufacturing: simplifying processes and reducing pollution. J. Clean. Prod. 369, 133229.
    [43]
    Xu, W., Chai, X.Y., Zhao, G.H., Li, J., Wang, X.C., 2019. Preparation of reactive amphoteric polyurethane with multialdehyde groups and its use as a retanning agent for chrome-free tanned leather. J. Appl. Polym. Sci. 136, e47940.
    [44]
    Yu, L.D., Qiang, X.H., Cui, L., Chen, B., Wang, X.K., Wu, X.H., 2020. Preparation of a syntan containing active chlorine groups for chrome-free tanned leather. J. Clean. Prod. 270, 122351.
    [45]
    Zhang, M.Y., Song, L.H., Jiang, H.F., Li, S., Shao, Y.F., Yang, J.Q., Li, J.F., 2017. Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions. J. Mater. Chem. A 5, 3434-3446.
    [46]
    Zhang, Z., Abidi, N., Lucia, L., 2023. Smart superabsorbent alginate/carboxymethyl chitosan composite hydrogel beads as efficient biosorbents for methylene blue dye removal. J. Mater. Sci. Technol. 159, 81-90.
    [47]
    Zhao, J.J., Luan, L.P., Li, Z.W., Duan, Z.F., Li, Y.F., Zheng, S.B., Xue, Z.X., Xu, W.L., Niu, Y.Z., 2020. The adsorption property and mechanism for Hg(Ⅱ) and Ag(I) by Schiff base functionalized magnetic Fe3O4 from aqueous solution. J. Alloys Compd. 825, 154051.
    [48]
    Zhao, J.J., Niu, Y.Z., Ren, B., Chen, H., Zhang, S.X., Jin, J., Zhang, Y., 2018. Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution. Chem. Eng. J. 347, 574-584.
    [49]
    Zhuang, S.T., Zhu, K.K., Wang, J.L., 2021. Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(Ⅱ) removal. J. Clean. Prod. 285, 124911.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return